
From Hyperinflation to Stable Prices:
Argentina’s Evidence on Menu Cost

Models∗

Fernando Alvarez
University of Chicago

f-alvarez1 AT uchicago.edu

Martin Gonzalez-Rozada
UTDT

mrozada AT utdt.edu

Andy Neumeyer
UTDT

pan AT utdt.edu

Martin Beraja
UTDT

martin beraja AT hotmail.com

March 23, 2011

Abstract

We review and extend several comparative statics results of fixed menu cost models
of price setting firms facing real idiosyncratic shocks, such as the type studied by
Golosov and Lucas (2007) as well as by many others. These results are confronted with
their empirical counterparts using the micro data underlying Argentina’s consumer
price index for a time period where inflation rates vary from almost 5000% per year
to less than zero (1988-1997). We find that the following theoretical predictions are
verified in the data : (i) the steady state frequency of price changes is unresponsive to
inflation for low inflation rates; (ii) the elasticity of the steady state frequency of price
changes with respect to inflation converges to 2/3 as inflation becomes large; (iii) the
frequency of price increases is unresponsive to inflation and equal to the frequency of
price decreases for small inflation rates; (iv) the frequency of price decreases converges
to zero as inflation increases; (v) the average magnitude of price changes is symmetric
for price increases and decreases at low inflation rates; (vi) for high rates of inflation
the magnitude of price increases and decreases should be increasing with the inflation
rate (in the data this is not verified for price decreases that stay roughly constant, and
decrease for inflation rates exceeding 500% per year); (vii) the steady state dispersion of
relative prices is unresponsive to inflation for low rates; (viii) the steady state dispersion
of relative prices is an increasing function of inflation for high rates of inflation.

We also show that the Argentine data on the relation between the frequency of price
changes and the rate of inflation is consistent with the cross country evidence available
in the literature.
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1 Introduction

Infrequent nominal price adjustment are at the center of a large number of models of aggregate

fluctuations and monetary policy analysis. In this paper we use a unique data set to examine

some of the predictions of models of monopolistic firms setting prices subject to a fixed cost of

adjustment. These models have been introduced by Barro (1972) and Sheshinski and Weiss

(1977), and augmented to include idiosyncratic firm level shocks by Bertola and Caballero

(1990), Danziger (1999), Golosov and Lucas (2007), Gertler and Leahy (2008), among others.

We concentrate on simple comparative static results which apply as long as the fixed cost

are small enough. The results compare the effect of different constant inflation rates on the

average frequency of price changes and on the dispersion of relative prices, keeping everything

else fixed. The first type of result is that in the neighborhood of zero inflation, the average

frequency of price changes as well as the dispersion of relative prices are approximately

unresponsive to inflation. Likewise, under the same conditions we found that at zero inflation

the frequency of price increases should be the same as of price decreases, as well as the the

absolute value of price increases should be the same as the one for price decreases. The

second type of result is that for inflation rates that are large relative to the idiosyncratic

shocks, the elasticity of the average frequency of price changes with respect to inflation is

approximately 2/3. In the case of high inflation the elasticity of relative price dispersion with

respect to inflation should be positive. Furthermore, as inflation diverge most price changes

should be increases, but conditional on a decrease, the size of the decrease should be large.

The result for high inflation are from Sheshinski and Weiss (1977) and especially Benabou

and Konieczny (1994), properly interpreted. The results for low inflation are new, but closely

related to some results in Alvarez, Lippi, and Paciello (2010) and Alvarez and Lippi (2011)

for models with permanent idiosyncratic shocks.

These theoretical predictions underlie the cost of inflation in models with sticky prices.

First, the frequency of adjustments is a direct source of welfare cost of inflation for the

society, since these resources are wasted. Second, the “extra” price dispersion created by

nominal variation in prices is the other avenue for inefficiency in models with sticky prices,

as explained in chapter 6 of Woodford (2003) or Burstein and Hellwig (2008), among many

others.

In this paper we illustrate some of the theoretical predictions reported above using the

micro-data underlying the construction of the argentinean CPI index from 1989 to 1997. The

unique feature of this data is that in the initial years inflation was extremely high, almost

5000% during 1989 and almost 1500% during 1990. After the stabilization plan of 1991 there

is a quick reduction of inflation, and after 1992 there is virtually price stability. We examine



the time series of the average frequency of price changes, the dispersion of the frequency

of price changes across industries, and the dispersion of relative prices. We compare how

these statistics vary with the rate of inflation, in particular how they covary with inflation

at low rates of inflation, and how they covary with inflation at high rates of inflation. We

believe that the large variation of inflation in our data set makes it a good laboratory to test

features of different models of price adjustment, and as such we view our finding interesting

well beyond the effect of large inflation.

We report three type of findings. First, we find that the frequency of price chances is

approximately uncorrelated with contemporaneous inflation for inflation rates below 10%,

and that this frequency has an elasticity close to 2/3 for higher inflation rates. These finding

are robust to different treatment of sales, product substitutions, and missing values in the

estimation of the frequency of price changes, as well as robust with respect to the level of

aggregation of price changes. We also find them robust to whether we use contemporaneous

inflation or an estimate of expected future inflation, for the relevant time frame. Second,

we find that the cross-industry dispersion on the frequency of price changes diminishes as

inflation increases. We interpret this to be consistent with our hypothesis that as inflation

increases, the determinants for price changes become more similar across industries, since

aggregate inflation is common to all goods. Third, we find that the dispersion of relative

prices is approximately uncorrelated with inflation for low value of inflation, but it is tightly

related to inflation for large values, with an elasticity below 1/3.

The paper is organized as follows. Section 2 contains the theoretical analysis of the

effect of inflation on the frequency of price changes and on the dispersion of relative prices.

Section 3 describes our data set. Section 4 has an explanation of the method used to compute

the frequency of price changes (adapted mostly from Klenow and Kryvtsov (2008) and to less

extent from Nakamura and Steinsson (2008)) to allow for time varying frequency. Section 5

presents the estimates of the time series of the frequency of price changes and inflation,

including extensive sensitivity analysis. This section also presents the analysis of the time

series of the cross industry dispersion of the frequency of price changes vs inflation. Section 6

presents a decomposition of inflation into its extensive and intensive margins for positive

and negative price changes and analyzes how this decomposition varies with the level of

inflation. Section 7 presents the estimates of the dispersion of relative prices vs. inflation.

Section 8 discusses the relation with other studies that analyze the frequency of price changes

and inflation. Several appendices discuss other methodological issues, more details of the

estimates, as well as of the data-base. Section G in the appendix contains a short description

of the history of economic policy and inflation for the years before and during our sample.
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2 Comparative Static Properties of Menu Cost Models

In this section we review several theoretical predictions of models where price adjustment is

subject to a fixed cost. We study the average frequency of price changes of a single monopolist

firms facing a fixed cost of changing its nominal price in the presence of idiosyncratic shocks

and constant inflation. We highlight two comparative static result of a class of models which

apply as long as the fixed cost are small enough. The results compare the effect of different

constant inflation rates on the average frequency of price changes and on the dispersion of

relative prices, keeping everything else fixed. The first result is that in the neighborhood

of zero inflation, the average frequency of price changes as well as the dispersion of relative

prices are unresponsive to inflation. Additionally, the frequency of price increases and price

decreases should be similar, as well as the average size of price increases and price decreases.

The second result is that for inflation rates that are large relative to the idiosyncratic shocks,

the elasticity of the average frequency of price changes with respect to inflation converges to

2/3, provided the idiosyncratic shocks are persistent. Likewise in this case, the elasticity of

relative price dispersion with respect to inflation is positive, converging approximately 1/3.

The inflation rate required for behavior of the average frequency of price changes, and the

relative prices to converge to these values may be different, depending on the persistence of

the idiosyncratic shocks. As the inflation rate becomes very large, price decreases become

less frequent, or equivalently most adjustment are price increases. Also, as inflation rate

increases, the absolute value of the average price increase as well as price decrease becomes

larger. We will first write down a simple set up where these results are obtained, explain

the nature of the assumptions needed for the results, and remark in which form these results

are already present in the literature. We will discuss the pros and cons of applying these

comparative statics results to the study of time series properties of inflation and frequency

of price changes and also illustrated with a case that we characterized and solve numerically

for a range of inflations similar to the one in our data set. We will then characterize the

solution of a particular version of the model and illustrate the results of the propositions.

We find these theoretical prediction interesting because they underlie the cost of inflation

in model with sticky prices. First, the frequency of adjustment, when adjustment carries a

cost, is an obvious source of welfare lost due to inflation for the society. Second, the “extra”

price dispersion created by nominal variation in prices is the other avenues for inefficiency

in models with sticky prices, since it creates distortions in relative prices. See, for example,

chapter 6 of Woodford (2003) and referees therein for the analysis of the second effect. See ?

and Burstein and Hellwig (2008) for earlier and recent examples of analysis that takes both

effects of inflation into account, the latter using heterogeneous consumers that search for
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products and homogenous firms, and the latter using differentiated products in the demand

side and heterogeneity in the firms cost.

2.1 Sensitivity to inflation at low and high inflation

In this section we explore the sensitivity to inflation of the frequency of price changes and

of price dispersion to inflation, at both very low and very high inflation. We write a simple

model of a monopolist adjusting the nominal price of its product subject to a possible time

varying fixed cost Ct, i.e. a cost that it is independent of the size of the price change. We

assume that the instantaneous profit of the monopolist depend on its price relative to the

economy (or industry) wide average price and on an idiosyncratic shock. We let F (p− p̄, z)
be the real value of the profit per period as a function of the log of the nominal price charged

by the firm, denoted by p, relative to the log of the nominal economy (or industry) wide

price, denoted by p̄, and the idiosyncratic shock z. We assume that the economy wide price

growths at a constant inflation rate π so that p̄(t) = πt + p̄(0). The variable z ∈ Z is a

shifter of the profit function. We also allow the fixed cost to depend on z, in which we write

Ct = ζ(zt). We assume that {zt} is a diffusion with coefficients a(·) and b(·):

dz = a (z) dt+ b (z)σ dW

where {W (t)} is a standard Brownian Motion so W (t) − W (0) ∼ N(0, t). We keep the

parameter σ separately from b(·) so that when σ = 0 the problem is deterministic. We use

r ≥ 0 for the real discount rate of profits and adjustment costs. We let {τi} be the stopping

times at which prices are adjusted and {∆p(τi)} the corresponding price changes, so that the

problem of the firm can be written as

V (p− p̄, z) = (1)

max
{τi,∆pi}∞i=0

E

[∫ ∞
0

e−rtF (p(t)− p̄(0)− πt, z(t)) dt+
∞∑
i=0

e−rτiζ(z(t))
∣∣z(0) = z

]

with p(t) = p+
∑τi<t

i=0 ∆p(τi) for all t ≥ 0 and p̄(0) = p̄.

We think of this problem as similar to the firm’s problem in Golosov and Lucas (2007).

To describe the solution of this problem the state space R× Z can be divided into a control

set C(π, σ2) and an inaction set I(π, σ2), so that if (p− p̄, z) ∈ C(π, σ2), then it is optimal to

adjust prices, and otherwise if (p− p̄, z) ∈ I, inaction is optimal. Since {z(t)} has continuous

paths, with additional regularity conditions, all the adjustment will occur at the boundary

of the inaction set, which we denote as ∂I. Conditional on adjustment, the firm will change
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prices so that its nominal price just after adjustment is given by p = p̄ + ψ(z; π, σ2). Thus

the solution of the problem consists on finding the control C and inaction I sets, as well

as the optimal adjustment function ψ. We are including π and σ2 as explicit arguments of

the decisions rules to conduct some comparative statics. Using the optimal decision rules

we can compute the density of the invariant distribution of the state, g(p − p̄, z; π, σ2), as

well as the the expected time between adjustments T (p− p̄, z; π, σ2) starting from the state

(p − p̄, z). Note that using g(·) we can readily find the distribution of relative prices in

the economy or industry. Using these objects we can compute the expected time elapsed

between consecutive adjustments under the invariant distribution, and its reciprocal, the

expected number of adjustments per unit of time, which we denote by λa(π, σ
2). We also

denote λ+
a (π, σ2) and λ−a (π, σ2) the frequencies of price increases and decreases respectively.

Furthermore, we let ∆+
p (π, σ2) the average size of price change, conditional of having an

increase, and ∆−p (π, σ2) the the corresponding average size of price changes, conditional of

having a decrease. interest is to study λa, σ̄, etc. as a function of π.

Our first result is that if we assume that F (·) is symmetric in the log of the static profit

maximizing relative price p∗ as well as in its shifter z, and if the process for the shocks is

symmetric, then inflation has only a second order effect on the frequency of price changes at

zero inflation. To state our symmetry assumption we define p∗(z) = arg maxx F (x, z). We

say that a(·), b(·) and F (·) are symmetric if Z = [−z̄, z̄], we normalize p∗(0) = 0, and

a(z) = −a(−z) ≤ 0 and b(z) = b(−z) > 0 for all z ∈ [0, z̄] , (2)

p∗(z) = −p∗(−z) ≥ 0 for all z ∈ [0, z̄] and (3)

F (p̂+ p∗(z), z) = F (−p̂+ p∗(−z),−z) + f(z) for all z ∈ [0, z̄] and p̂ ≥ 0 , (4)

for some function f(z). We let µ(z) the density of the invariant distribution of z, when

it exists. Equation (2) implies that the invariant distribution µ as well as the transition

densities of the exogenous process {zt} are symmetric around z = 0. Equations (3) -(4) state

that the profit function is symmetric around the (log) maximizing price and its cost shifter.

Thus if the price is p̂ higher than the optimal for a firm with z, profits deviate from its

optimal value by the same amount as with prices p̂ lower than the optimal when the shifter

is −z. The function f allows to have an effect of the shifter z on the level of the profits that

is independent of the price. An example of a symmetric case is

a(z) = −a0z , b(z) = b0, F (p, z) = d0 − c0 (p− z)2 − f0z so p∗(z) = z , (5)

for non-negative constants a0, b0, c0, d0 and f0. One way to think about the symmetry as-
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sumption is to consider a second order approximation of the profit function around the profit

maximizing price, so that

F (p, z) = F (p∗ (z) , z) +
1

2
Fpp (p∗ (z) , z) (p− p∗ (z))2 + o

(
(p− p∗ (z))2) . (6)

We note that when the fixed adjustment cost C is small, then the firm will adjust the prices

frequently enough so that (p− p∗(z))2 will be small, and hence the quadratic approximation

should be increasingly accurate as C become small.

We let h(p̂; π, σ2) =
∫
Z
g(p̂, z; π, σ2)dz the invariant distribution of the relative prices p̂,

for an economy, or industry, with (π, σ). Using h we can compute several statistic of interest,

such as σ̂(π, σ2) the standard deviation of the relative prices p̂ = p− p̄. As in the case of the

frequency of price changes, we include (π, σ2) explicitly as arguments of this statistic. With

the symmetry assumption so defined we have the following result:

Proposition 1. Let F (·), a(·) and b(·) be symmetric as in equation (2)-equation (4). If the

frequency of price changes λa(·, σ2) is differentiable at π = 0, the ∂
∂π
λa(0, σ

2) = 0. Likewise,

if the density of the invariant h(p̂; ·, σ2) is differentiable at π = 0, then ∂
∂π
σ̂(0, σ2) = 0.

Furthermore frequencies and size of price adjustment are symmetric: λ+
a (0, σ2) = λ−a (0, σ2)

and ∆+
p (0, σ2) = ∆−p (0, σ2).

The main idea is to use the symmetry of F to show that the expected number of adjust-

ments is symmetric around zero inflation, i.e. that λa(π, σ
2) = N(−π, σ2) for all π. Given

the symmetry of the profit function we view this property as quite intuitive: a 1% inflation

should give rise to as much price changes as a 1% deflation. Additionally for the distribu-

tion of relative prices, the main idea is to show that h(p̂; π, σ2) = h(−p̂,−π, σ2) for all p̂, π,

i.e. that a high relative prices with inflation have the same chances that low relative prices

with deflation. Thus, symmetric function, are locally unchanged w.r.t. π, and so the second

moment has no first order effect of inflation at π = 0.

Proof. (of Proposition 1) The value function, the optimal adjustment function and the

inaction sets are all symmetric in the sense that:

V (p̂+ p∗(z), z; π, σ2) = V (−p̂+ p∗(−z),−z;−π, σ2) + v(z) ,

ψ(z;−π, σ2) = −ψ(−z; π, σ2), and

(p̂+ p∗(z), z) ∈ I(π, σ2) =⇒ (−p̂+ p∗(−z),−z) ∈ I(−π, σ2)

for all z ∈ [0, z̄], p̂ ≥ 0 and π ∈ (−π̄, π̄). The symmetry of these three objects can be

established using a guess and verify argument in the Bellman equation. This argument has

two parts, one deals with the instantaneous return and the second with the probabilities of
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different paths of z′s. For the instantaneous return we note that:

F (p(t)− p̄(t) , z(t)) = F ( p(0)− p̄(0)− πt− p∗ (z(t)) + p∗ (z(t)) , z(t))

= F (−p(0) + p̄(0) + πt− p∗ (−z(t)) + p∗ (−z(t)) ,−z(t)) + f(z(t))

= F (−p(0) + p̄(0) + πt+ p∗ (z(t)) + p∗ (−z(t)) ,−z(t)) + f(z(t)) ,

where the second equality holds by symmetry of F (·) setting p̂(t) = p(0)− p̄(0)−p∗(z(t))−πt.
Thus fixing the path of {z(t)} for 0 ≤ t ≤ τ , starting with p(0)− p̄(0) and z(0) and having

inflation π, gives the same profits, assuming symmetry of F (·), than starting with−p(0)+p̄(0)

and having inflation −π and −z(0). Finally the probability of the path {z(t)} for t ∈ [0, τ ]

conditional on z(0), given the symmetry of a(·) and b(·) is the same as the one for the path

{−z(t)} conditional on −z(0). From here one obtain that the inaction set is symmetric.

Likewise, from this property it is easy to see that the optimal adjustment is also symmetric.

If with inflation π a firm adjust with current shock z setting p = p̄ + ψ(z; π, σ2), then with

inflation −π and current shock −z it will adjust to p = p̄ + ψ(−z,−π) = p̄ − ψ(z,−π). To

se this, let t = 0 be a date where an adjustment take place, let p(0) the price right after

the adjustment, and let τ the stopping time until the next adjustment. The value of p(0)

maximizes

p(0) = arg max
p̃

E
[∫ τ

0

e−rtF (p̃− p̄(0)− πt, z(t)) |z(0)

]
= arg max

p̃
E
[∫ τ

0

e−rtF (p̃− p̄(0)− πt− p∗(z(t)) + p∗(z(t)), z(t)) |z(0)

]
= arg max

p̃
E

[∫ τ ′

0

e−rtF (−p̃+ p̄(0) + πt− p∗(−z(t)) + p∗(−z(t)),−z(t)) | − z(0)

]

= arg max
p̃

E

[∫ τ ′

0

e−rtF (−p̃+ p̄(0) + πt,−z(t)) | − z(0)

]
.

where τ ′ is the stopping time obtained from τ but defined flipping the sign of the z′s. Given

the symmetry of the inaction set and optimal adjustment it is relatively straightforward to

establish the symmetry of the expected time to adjustment T and the invariant density g.

With the T and g symmetric, it is immediate to establish that λa is symmetric. Finally, if

λa is differentiable, then ∂
∂π
λa(π, σ

2) = − ∂
∂π
λa(−π, σ2), which establish the required result.

Now we show that σ̂ has no first order effect of inflation. For that we first use that

the symmetry of the decision rules and of the invariant of the shocks implies that h(p̂, π) =

h(−p̂,−π) where for simplicity we suppress σ2 as an argument. Differentiating this expression

w.r.t. π and evaluating at π = 0 we obtain: hπ(p̂, 0) = −hπ(−p̂, 0). Let f(p̂, π) be any
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symmetric differentiable function in the sense that f(p̂) = f(−p̂). Then writing the expected

value of f as E[f |π] =
∫ 0

−∞ f(p̂)h(p̂, π)dp̂ +
∫∞

0
f(p̂)h(p̂, π)dp̂ and differentiating both terms

w.r.t. π and evaluating it at π = 0, using the implications for symmetry for the derivatives

of h and the symmetry of f we have ∂
∂π
E[f |0] = 0. Applying this to f(p̂) = p̂2 we obtain that

inflation does not have a first order effect on the second non-centered moment of the relative

prices. Finally, to examine the effect of inflation on the variance of the relative prices, we

need to examine the effect of inflation on the square of the average relative price, i.e.

∂

∂π

[∫ ∞
−∞

p̂ h(p̂, π)dp̂

]2

|π=0 =

[∫ ∞
−∞

p̂ h(p̂, 0)dp̂

] [∫ ∞
−∞

p̂ h(p̂, 0)dp̂

]
= 0,

since by symmetry of h(·, 0) around p̂ = 0 we have
∫∞
−∞ p̂ h(p̂, 0)dp̂ = 0. Then, we have shown

that inflation has no first order effect on the variance of relative prices around π = 0.

Finally, the equality of the frequency and average size of price increases with the frequency

and average size of price decreases follows immediately from the symmetry. Q.E.D.

We comment that the assumption of differentiability of λa with respect to π is not merely a

technical condition. The function λa(·, σ2) could have have a local minimum at π = 0 without

being smooth, as it is in the case of σ2 = 0 to which we will turn in the next proposition.

Nevertheless, we conjecture, but we have not proved yet at this level of generality, that as

long as σ2 > 0, the problem is regular enough to become smooth, i.e. the idiosyncratic

shocks will smooth out and dominates the effect of inflation. Indeed, for several examples

one can either compute all the required functions or show that indeed they are are smooth,

given the elliptical nature of the different ode’s involved. Based on this logic, as well as on

computations for different models, we believe that the length of the interval for inflations

around zero for which λa(·, σ2) is approximately flat is increasing in the value of σ2.

The alert reader will realize that the essential assumption is the symmetry of the profit

function around the profit maximizing price, and hence if this is maintained, the result should

hold for a larger class of models. Indeed, in Alvarez, Lippi, and Paciello (2010) and Alvarez

and Lippi (2011) a version of Proposition 1, i.e. that inflation has only a second order effect

on the expected frequency of price changes at π = 0 for two wider classes of models: those

that have both observations and menu cost models, and those that have multi-product goods.

In those papers the approximation stated in equation (6) is used, and furthermore p∗(z) = z

is assumed to follow a random walk with no drift (so that z̄ =∞, a(z) = 0 and b(z) = 1).

While we don’t know of other theoretical results analyzing the sensitivity of λa(π) around

π = 0 in this set-up, there is a closely related model that contain a complete analytical

characterization by Danziger (1999). In that paper a firm faces a demand with an elasticity

of demand of η = 2, constant return to scale production function subject to permanent
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idiosyncratic productivity shocks (with uniform innovations), and an (equilibrium) random

nominal wage (also following a random walk). The model is set-up in discrete time. The

firm faces a fixed cost of changing prices proportional to a fraction of the period sales. The

equilibrium, not just the maximization problem of the firms, is completely characterized

in the case of random money shocks (log money growth is iid with mean m) and random

aggregate productivity shocks. In equilibrium firms adjust their prices as to control the mark-

up over marginal cost in a two sided sS band: when the markup hits either s or S prices

are changes so that the markup is set to I, with s < I < S. We note that this implies than

the distribution of the log of relative prices has a mass point at I and otherwise is uniform

between S and s. The paper analyzes the case where the range on monetary shocks is small

relative to the range of the idiosyncratic shocks, see Assumption 2 in Danziger (1999) for

a precise definition. In equilibrium the objective function of the firm is not symmetric in

the sense of equation (4) (see the first equation for Vt in section II and in the statement of

Theorem 1 in Danziger (1999), so we don’t expect the conclusion of Proposition 1 to hold

without further conditions. Indeed the author presents results characterizing the comparative

static of several objects of interest, among them the expected duration of unchanged prices,

which is referred to as Ω in that paper, as a function of the expected inflation rate, referred

to as m. Theorem 5 of Danziger (1999) states that ∂
∂m

Ω < 0, even if m = 0, or in our

notation, ∂
∂π
λa > 0 even for π = 0. Nevertheless, as explained above if the fixed costs are

small, we expect that the second order expansion of the profit function dominates, and hence
∂
∂π
λa(0) = 0. Indeed, we show in Appendix B that

lim
c↓0

∂λa(π)

∂π
= lim

c↓0

∂S(π)− s(π)

∂π
= 0 (7)

as long as π is small enough so that Assumption 2 in Danziger (1999) holds. Note that since

inflation has no first order effect on S − s, then the dispersion of relative prices does not

not respond to inflation either. To summarize, we find that the result in Danziger (1999) is

consistent with our view that the effect of inflation on the frequency of price changes and in

the dispersion of relative prides in menu cost sS models with idiosyncratic shocks are small.

Now we turn to the analysis of the elasticity of the frequency of adjustment λa and

dispersion of relative prices σ̄ with respect to inflation π for large values of inflation. Ideally

we will like to characterize the elasticity of λa and σ̄ with respect to π for large value

of π keeping fixed σ2. Instead we will study the elasticity of λa with respect to π for the

deterministic case, i.e. when σ2 = 0, a version of the problem studied by Sheshinski and Weiss

(1977). We give a brief explanation of why this calculation of the values of the elasticity for

the Sheshinski and Weiss’s (1977) model for a π > 0 should be informative for the case of
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σ2 and very large π, esp First notice that if in the problem described in equation (1) we

multiply r, π, σ2 and the function a(·) by a constant k > 0, we are just changing the units

at which we measure time. Thus the corresponding expected number of adjustment per unit

of time λa will be multiplied by k, and the dispersion of relative prices σ̄ will stay constant.

Furthermore if the value of r and the function a(·) are both equal to zero, this will mean

that λa will be homogenous of degree one in (π, σ2). Using this homogeneity:

lim
σ2>0,π→∞

π

λ(π, σ2)

∂λ(π, σ2)

∂π
= lim

κ→∞

1

λ(κ, 1)

∂λ(κ, 1)

∂π
= lim

π>0,σ2→0

π

λ(π, σ2)

∂λ(π, σ2)

∂π

The interpretation of r being zero is that instead of maximizing the expected discounted

cost the firm is maximizing the expected average cost, a case frequently analyzed in stopping

time problems. If the function a(·) = 0 and b(·) is bounded, then it means that the shifter

z has permanent shocks. To summarize, if r is small, and if a(·) is small -so that shocks are

very persistent-, we expect that the elasticity of λa with respect to inflation obtained from

Sheshinski and Weiss (1977) to be very close to the one for the case of σ2 > 0 and π is very

large. In Section 2.2 we document numerically that indeed they are very close. We note

that this argument does not directly apply price dispersion σ̄ since setting a(z) = 0 implies

that there is no invariant distribution of z, and hence no invariant distribution of relative

prices. Thus for the case of σ̄ the idiosyncratic shocks cannot be completely permanent, and

we only expect that the equality holds approximately, even for very large values of π. In

Section 2.2 we return to the effect of changes on π on the dispersion of relative prices when

the idiosyncratic shock is very persistent.

In the Sheshinski and Weiss’s (1977) model the time elapsed between adjustments is

simply a constant, which we denote by T (π). Sheshinski and Weiss (1977) find sufficient

conditions so that the time between adjustments decreases with the inflation rate (see their

Proposition 2), and several authors have further refined the characterization by concentrating

on the case where the fixed cost C is small. Let p∗ = arg maxp F (p, 0) be log the static

monopolist maximization profit, where z = 0 is a normalization of the shifter parameter

which stays constant. In the deterministic set-up the optimal policy for π > 0 is to let the

log of the price reach a value s at which time it adjusts to S, where s < p∗ < S. The

time between adjustments is then T (π) = (S − s)/π. We also note another implication, or

comparative static, obtained in the Sheshinski and Weiss’s (1977) model, i.e. the set-up with

σ2 = 0. The distribution of (log) of relative price is uniform in the interval [s, S]. Thus the

standard deviation of the log of the relative prices in this economy, denoted by σ̄, is given

by σ̄ =
√

1/12(S − s). As established in Proposition 1 in Sheshinski and Weiss (1977), the

range of prices S− s is increasing in the inflation rate π. Obviously the elasticities of λa and
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of σ̄ are related since S − s = πT and λa = 1/T . The calculations in equations (A8) and

(A9) of the Appendix in Benabou and Konieczny (1994) imply the following result:

Proposition 2. Assume that σ2 = 0 and π > 0. Then it follows immediately that

λ−a (π, σ2) = 0 and that ∆+
p (π, σ2) = S − s. Furthermore assume that F (·, 0) is three times

differentiable, then

lim
C→0

π

λa

∂λa
∂π

=
2

3
and lim

C→0

π

σ̄

∂σ̄

∂π
=

1

3
(8)

To obtain this result the authors compute the value of following an sS policy assuming

that the period return function F (p, 0) is cubic in terms of deviations from the profit maxi-

mizing price, i.e. p− p∗. This allows for explicit computation of the value of the policy and

to obtain the first order conditions at s and S for any value of π. Taking the limit as C in

the resulting expression gives Proposition 2. We include next a short discussion of higher

order approximations that suggest that the elasticity is close to 2/3 but may be smaller. To

simplify the expression we report the expressions obtained for the case of r = 0, i.e. the sS

rule that maximizes the average profits net of adjustment costs. In this case the expression

leading to Proposition 1 in Benabou and Konieczny (1994) gives

T (π) = 2

[
−3

2

C

F ′′(p∗, 0)

]1/3

π−
2
3 − 2

3

[
−3

2

C

F ′′(p∗, 0)

]2/3 [
F ′′′(p∗, 0)

−2F ′′(p∗, 0)

]
π−

1
3 . (9)

The third order approximation used to obtained this expression is accurate as long as the

product of the fixed cost and inflation rate Cπ is small. The point of this expression is that

if F ′′′ > 0, the elasticity will be smaller than 2/3, while the opposite hold if F ′′′ < 0. We note

that F ′′′ > 0 is indeed the sign of the third derivative in the case where F (·) is obtained as a

third order expansion of the profit for a monopolist facing a demand with constant elasticity

η and with a constant marginal cost normalized to one ( z = log(1) = 0). In this case,

expressing the cost as fraction of the maximum profits so that C = c F (p∗, 0) for some factor

c > 0, we have

T (π) = 2

[
3

2

c

η(η − 1)

]1/3

π−
2
3 +

2

3

[
3

2

c

η(η − 1)

]2/3 [
η − 1

2

]
π−

1
3 . (10)

Thus the absolute value of the elasticity of this function may be smaller than 2/3. Yet for

the values for which the approximation makes sense, the differences are not large, as shown
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in Figure 1. 1 This figure plots the elasticity of λa obtained from equation (10) for several

combinations of the elasticity η and fixed cost c on the range of values of π for which the

third order approximation to the function F is still single peaked in the range [s, S]. To

interpret η recall that in this example the mark-up of price over marginal cost in the case of

no adjustment cost is η/(η − 1), so η = 7 corresponds to a mark-up of about 0.15 and η = 4

to about 1/3.

Figure 1: Theoretical Frequency of Price Changes λa and Inflation Rates
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We finish this section with a few remarks on the applicability of these comparative static

results to the time series variation in our data set. The first remark is about the interpre-

tation of the propositions, which were obtained for extreme values of the parameters, for

intermediate values of the parameters. From Proposition 2 and the analysis that it follows

we conclude that in the deterministic case the elasticity of the average frequency of price

changes with respect to inflation is about 2/3 if σ = 0. Combining this with the result from

Proposition 1, we conclude that the elasticity is lower than 2/3 but approaches 2/3 as π

becomes very large for a fixed σ2 > 0. The second remark is that these elasticities were

1While the absolute value of the elasticity in equation (10) goes to 1/3 as π → ∞, the approximation is
only accurate for small values of π C. Furthermore, a necessary conditions for the value of s used in the
approximation to satisfies s < p∗ and for the approximation to F to be decreasing in the range [p∗, S] is that

π ≤ (η−1)η
(η−1/2)3

2
3/c. Thus one cannot simply take the limit in equation (10) as π →∞ for fixed c.
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obtained under the assumption that inflation is assumed to remain constant at the rate π,

and that the frequency of price changes is computed under the invariant distribution. Thus,

strictly speaking, our proposition are not a prediction for time series variation, but just a

comparative static result. We give two comments on this respect. First, this should be less

of a concern for very high inflation, since the model becomes close to static, i.e. firms plan to

revise very often and the adjustment to the invariant distribution happens very fast. Second,

when we analyze the argentinean data we will correlate current frequency of price changes

with the current inflation rate as well as to correlate the current frequency of price changes

with an average of the current and future inflation rates. We experiment with different def-

inition of this averages, including ones where we average the inflation rates in the period

between the current month and some multiple of the implied instantaneous duration given

the current frequency of price changes.

2.2 Illustrating the theory with a numerical example

In this section we specify a version of the firm problem studied in Golosov and Lucas (2007).

We characterize the value function, decisions rules, and the statics of interest analytically,

up to the solution of 3 equations in 3 unknowns. We then solve for the model numerically,

illustrating the theoretical results of the previous section.

The difference of the set up with the one in Golosov and Lucas (2007) is that we set the

fixed cost proportional to current profits, and that the idiosyncratic shock is permanent, as

opposed to stationary. Additionally we assume that products life is exponentially distributed

that implies that there exist an ergodic distribution of relative prices (we also view this device

as realistic given the rate at which product are substituted in most data sets). This version of

the model is identical to the one by Kehoe and Midrigan (2010), if we zero out the transitory

shock that gives rise to sales, and set in continuous time.

We assume that the period profits are given by a demand with constant elasticity η and

with a constant return to scale technology with marginal cost given by ez, so that

F (p− p̄, z) = e−ηp (ep − ez) ,

so that p− z is the log of the gross markup. As explained above, we assume that the shocks

on the (log) of the cost are permanent in the sense that

dz = µzdt+ σdW − zdN.

where N is the counter of a Poisson process with constant arrival rate per unit of time ρ. We
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interpret this as products dying with Poisson arrival rate ρ > 0 per unit of time, at which

time they are replaced by a new one which starts with z = 0 and must set it initial price.

A positive value of µz can be interpreted as a vintage effect, i.e. the technology for new

products growth at rate µz.

We assume that ζ(z) = c F (p∗(z), z) for some constant c > 0 so that ζ(z) = ĉ ez(1−η).

Since p∗(z) = z + m where m is the log of the gross optimal static markup m = log( η
η−1

).

Thus F (p∗(z), z) = e(1−η)z
(
η−1
η

)η
1

η−1
. Note that F (p∗(z), z) is decreasing and strictly convex

on z for η > 1. We will assume that η > 1 so that the static monopolist problem as a solution

and that

r + ρ ≥ (1− η)

[
µz + (1− η)

σ2

2

]
(11)

This inequality is required for the profits of the problem with zero fixed cost, ĉ = 0 to be

finite. In this case the expected discounted value of profits, starting with z0 is given by

E0

∫ ∞
0

e−(r+ρ)tF (p∗ (zt) , zt) dt =
(η − 1)η−1e(1−η)z0

ηη

∫ ∞
0

e−(r+ρ)tE0

[
e(1−η)zt

]
dt

=
(η − 1)η−1e(1−η)z0

ηη

∫ ∞
0

e

[
−(r+ρ)+(1−η)µz+(1−η)2 σ

2

2

]
t
dt . (12)

Since for η > 1 period profits are decreasing and convex on z, and hence discounted expected

profits are finite if r+ ρ is the discount rate is high enough, or if the cost increases at a high

enough rate µz is high (or ), or if σ2/2 is low enough.

In Appendix C we present several proposition with analytical characterization for the

solution of this model. In what follows we use x = p−z for the log of the real gross mark-up.

In Proposition 3 we show that when σ > 0, the inaction set is given by I = {(p, z) : x+ z <

p < x̄ + z} and that the optimal return point is given by ψ(z) = x̂ + z for three constants

X ≡ (x, x̂, x̄). This is due to the combination of a assumptions of constant elasticity of

demand, constant returns to scale and permanent shocks to cost while the product last.

This means that it is optimal to keep the price unchanged when the real markup x is in

the interval (x, x̄). When prices are not changed, the real markup evolves according to

dx = −(µz + π)dt + σdW . When the real markup hits either of the two thresholds, prices

are adjusted so that the real markup is x̂. Proposition 3 derives a system of three equations

in three unknowns for X, as well as the explicit solution to the value function, as function

of the parameters Θ ≡ (π, µz, σ
2, ρ, r, η, c). Proposition 4 derives an explicit solution for

the expected number of adjustment per unit of time λa given a policy X and parameters

(π, µz, σ
2, ρ). Proposition 5 characterizes the density g for invariant distribution of (p, z)

implied by the policy X and the parameters (π, µz, σ
2, ρ, η).

We associate the case where σ > 0 with the models by Golosov and Lucas (2007) and
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Kehoe and Midrigan (2010). In Proposition 6 we consider the case when σ = 0, π + µz > 0,

a version of Sheshinski and Weiss’s (1977) model, in which case the optimal policy can be

characterized simply by two thresholds s ≡ x < x̂ ≡ S, that solves two equations in two

unknowns. In this case λa = ρ
/ [

1− exp
(
− ρ
π+µz

(x̂− x)
)]

= (π+µz)/(x̂−x)+o(ρ/(π+µz)),

so that it coincides with the expression used for σ = 0 if ρ is small relative to π.

Figure 2: Optimal thresholds for different inflation rates
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We use Proposition 3 and Proposition 6 to solve for the optimal policies characterized by

the thresholds for the log of the markups x, x̂, and x̄ for a range of inflation rates π. We use

Proposition 4 and Proposition 6 to compute the expected number of adjustment per unit of

time λa. In both cases the inflation rates π is measure as continuously compounded and it is

plotted in a log scale. For the numerical examples we follow ? and use η = 3, which implies a

very large markup, but it roughly inline with marketing/IO estimates of demand elasticities.

We set ρ = 0.1 so products have a lifetime of 10 years, and r = 0.06 so yearly interest rates

are 6%. We let c = 0.002 so that adjustment cost is 20 basis point of yearly frictionless
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profits. We let µz = 0.02, i.e. a 2 percent per year increase in cost (or a 2% increase in

vintage productivity). We consider three values for σ ∈ 0, 0.015, 0.20, the first corresponds

to Sheshinski and Weiss’s (1977) model, and the others are 15% and 20% standard deviation

in the change in marginal cost, at annual rates. The values of c/(η(η− 1) and σ = 0.15 were

jointly chosen so that at zero inflation the model matches both the average number of price

changes λa = 2.7 and the average size of price changes of ∆+
p = ∆+

p 0.10, roughly the values

corresponding to zero inflation in our data set. Figure 2 illustrates the optimal threshold

policies for two cases, σ = 0.15 and σ = 0. It can be seen that the threshold for the lower

real markup that triggers adjustments x corresponding to σ > 0 and the one corresponding

to σ = 0 converge to each other as π increases. The same convergence is observed for the real

markup at the optimal return point x̂. Figure 3 illustrates the frequency of price changes λa

for three different values of σ. It can be seen that for σ > 0, the frequency λa is insensitive

to inflation in the neighborhood of zero inflation. It can also be seen that the length interval

of inflations around π = 0 for which λa is approximately constant is higher for higher σ.

This is an illustration of the conclusion in Proposition 1, even though the model does not

exactly satisfies all the assumption, since the profit function F derived from a constant

elasticity demand is not symmetric. Yet, as discussed above, for small cost c the terms in

the quadratic expansion, which are symmetric by construction, should provide an accurate

approximation. On the other hand, for very large inflation rates, the levels and slope of the

three lines converge to each other. Since the graph is in log scale, it is clear that the common

slope is approximately constant for large inflations, and close to 2/3 - the actual value for

this example is 0.64. Note that the conclusion of Proposition 2 holds for this figure even

though the model does not exactly satisfies all the assumption. Additionally the values we

obtain, slightly lower than 2/3 are completely in line with the cubic approximation developed

by Benabou and Konieczny (1994) discussed in equation (10) and plotted in Figure 1.

Figure 4 displays the frequency of price increases λ+
a , together with the frequency of all

adjustments λa, for two values of the cost volatility σ. Two features are worth mentioning: for

low inflation the frequency of price increases is about half of the frequency of price changes,

and as inflation become large enough all adjustment becomes price increases.

Figure 5 plots the size of the ”regular” price increases and ”regular” price decreases, for

different inflation rates. Imitating the empirical literature, we define as regular price changes

those not triggered by the jump shock that reset the value of z to zero. As explained above,

as inflation rises, the frequency of price decreases becomes very small, but the absolute value

of the size of the price decreases becomes larger.

We now turn to the distribution of relative prices. Figure 6 plots standard deviation

of the the log of relative price p or different inflation rates, fixing the value of the shock
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Figure 3: Frequency of Price changes for different inflation rates
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z at its mode, zero. This figures has three lines, one for σ = 0 which has an elasticity of

approximately 1/3, as predicted by the quadratic approximation to Sheshinski and Weiss’s

(1977) in equation (10). The other two lines correspond to positive values for σ of 15% and

20% per year. It can be readily seen that, as predicted by Proposition 1 for the symmetric

case, the standard deviation is insensitive to inflation around π = 0 provided that σ > 0.

As inflation becomes very large, the standard deviation converged to the one for σ = 0, and

hence its elasticity with respect to inflation is approximately 1/3.

If we were to plot g(·, 0) for large value of π the distribution will be almost uniform

between [, x̂], while if we plotted it for π close to zero it is single peaked at x̂ with support

on [x, x̄], roughly symmetric with densities decaying up to zero at the two extremes. By

examining the analytical characterization of the density of the invariant distribution derived

in Appendix 5-Proposition 5, one can see that shape of the distribution g(p, z) is the same

for other values of z. Yet, this result does not imply that the marginal distribution of relative

17



Figure 4: Frequency of Price Adjustments λa and of Price Increases λ+
a
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Figure 5: Average size of price increases ∆+
p and decreases ∆−p
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prices h(p) behaves in exactly the same way with respect to inflation. The reason for the

difference is that the marginal distribution has to be integrated between values of z for
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Figure 6: Standard deviation of log relative prices, conditional on z = 0.
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which relative prices can differ much more than then variation in relative prices within of the

inaction range for a given z, which is given by [x, x̄]. For extremely large inflation rates the

width of this range can swamped the effect the variation of z but in our numerical examples

it will take inflation rates even much higher than the ones observed in the peak months in

argentina. Thus, the rate at which the marginal distribution of relative prices h(·) is slower

than the rate at which each of the conditionals densities g(·, z) converge to a uniform as π

becomes arbitrarily large. In our numerical examples the unconditional standard deviation

of relative prices has an elasticity with respect to inflation much smaller than 1/3 even for

annual continuously compounded inflation rates in around π = 500% as Figure ?? shows,

which displays the dispersion of relative prices σ̄ for different inflation rates for two values of

the volatility of cost σ.

We briefly comment on the difference between the behaviour of λa and σ̄ as a function of

π. In this model the value for the frequency of price changes λa(π, σ
2) converges to λa(π, 0)

as inflation π increases much faster than σ̄(π, σ2). The reason is that given the permanent

nature of the shocks to a product cost, the expected time until the next adjustment T is only

a function of x = p − z. Recall that λa = 1/T so that the cross sectional distribution of z

is essentially irrelevant for the frequency of adjustment. Instead, the standard deviation of

relative prices σ̄ depends on the cross sectional distribution of z on a crucial way. Indeed, if

the idiosyncratic shocks were completely permanent, there will be no invariant distribution
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of relative prices. In our example, the reason why there is an invariant distribution is that

ρ > 0, so products are returned to z = 0 at exponentially distributed times.

Figure 7: Unconditional standard deviation of log relative prices σ̄
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3 Description of Data Set

Our dataset includes a total of 8, 618, 345 price quotes for items included in the Argentine

consumer price index. An item is a good/service of a determined brand sold in a specific

outlet in a specific period of time. The data goes from December of 1988 until September

of 1997. There are a total of 545 goods/services classified according to the MERCOSUR

Harmonized Index of Consumer Price (HICP) classification. The HICP uses the first four

digit levels of the Classification of Individual Consumption According to Purpose (COICOP)

of the United Nations plus three digit levels based on the CPI of the MERCOSUR countries.

The 545 goods/services in the database are the seven digit level of the HICP classification;

six digit level groups are called products ; five digit level groups are called sub-classes ; four

digit level categories are called classes ; three digit level categories are called groups and two

digit level groups are called divisions.2

Goods are divided into two groups: homogenous (74.6% of price quotes) and non-homogeneous

goods or differentiated goods (25.4% of price quotes). Examples of homogenous goods are:

2To simplify the exposition, when it is clear, we use goods to refer to the goods or services.
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barley bread, chicken, lettuce, etc. Examples of non-homogenous goods are moccasin shoes,

utilities, tourism, and professional services. Some goods, usually included in the consumer

price index are excluded from our sample because their prices are gathered for any good in

a basket, i.e. if one good is not available, it is substituted by any another in the basket. An

example of these baskets are medicines and cigarettes. These baskets corresponds to around

9.91% of total expenditure. We also exclude fuel prices which corresponds to a 4% of total

expenditure. We exclude them because they were gathered in separate data base, so they

are not available for all years. In our analysis, we redefine the weights of these goods, by

distributing the weights corresponding to these baskets and fuels to the other goods in the

product category. As done in other studies, we exclude the cost of dueling or rents (which

in our case are sampled monthly for a fixed set of representative apartment buildings and

other type of properties, and include what is paid on that month, as opposed to what is paid

for a new contract). Rents represent 2.33% of expenditure of households. Overall, once we

exclude fuel, rents and goods in baskets we have 506 goods/services, which cover about 84%

of household expenditures. Of the expenditure covered, 50.5 % corresponds to differentiated

(gathered one per month) and 49.5 % corresponds to the homogenous goods (gathered twice

per month).

Over the whole sample, there are 11, 659 outlets. On average, there are around 3200

outlets per month where prices are recorded for homogenous goods and about the same

number of outlets per month for non-homogenous goods. The distribution of goods/services

between homogeneous and non-homogeneous was done to be representative of the expenditure

of consumers. The data set contains 75% of observations classified as homogenous goods.

Prices are collected in “traditional” outlets (i.e. small-grocery stores) and super-market

chains divided according to the expenditure of consumers. The data contains an identifier of

whether the good was sold in a super-market chain. Our data sets covers the geographical

area of the city of Buenos Aires and the Province of Buenos Aires, which account for about

40% of the population and for about 60% of the GDP of Argentina.

Prices are gathered every two weeks for all homogenous goods and for those non-homogeneous

goods gathered in super-market chains; and gathered every month for the rest of the non-

homogeneous goods. The data set contains 233 of prices collected every two weeks (44%)

and 302 of prices collected every month (56%). There are 29 goods gathered both monthly

and biweekly.3 In average across the 9 years there are 166 outlets per good (81 outlets per

product gathered monthly and 265 gathered bimonthly). Our data set has many imputed

3The outlets are divided into 20 waves, corresponding to the 20 working days of the month. Each outlet
is visited, roughly in the same working day every 10 working days in the case of homogeneous goods and
non-homogeneous gathered at super-markets. In any case, we have the particular day where the price was
gather.
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prices, as well as few price quotes that have not been recorded with no apparent reason to

us. For our purposes, we will treat all these price quotes as missing observations. We give

now some more detailed explanation. One circumstance where prices are imputed are stock-

outs. Across the whole sample there are 10.5% of stock-out items.4 Across the whole sample

we have 10.2% of items with prices imputed (these items are all stock-outs).5 Furthermore

there are 2.25% of price quotes without flags for price substitution or stock-out that have

no recorded prices. Summarizing, for our purposes we call missing price quotes any quote

that has either a stock-out or whose price was not recorded. Using this definition, across

the 9 years of our data set we have an average of 12.44% of price quotes that are missing.

In addition to stock-outs, the statistical agency substitutes the price quote of an item for

a similar item, typically when the good is either discontinued by the producer or not sold

any longer by an outlet. Using this definition, across the 9 years of our data set we have an

average of 2.39% of price quotes that have been substituted.

The data set contains an indicator of whether an item was on sale or not. The database

has around 5% of items with prices associated with a sale flag. This is small compared with

the 11% frequency of sales reported by Klenow and Kryvtsov (2008) for the US. 70% of the

sales corresponds to homogeneous items (this is similar to Klenow and Kryvtsov (2008), who

report that sales are more frequent for food items).

Figure 8 displays the time series at a monthly frequency of the number of outlets per

product with non missing price quotes, for all the items and for those gathered biweekly

(homogenous goods) and monthly separately (differentiated goods). Figure 8 displays the

monthly time series of the frequency of the sale flags for all the products as well as for those

gathered monthly and for those gathered biweekly and monthly separately. In Appendix E

there are additional details on the time series of these frequencies.

4 Estimating the Frequency of Price Changes

Here we adapt the constant hazard rate model of Klenow and Kryvtsov (2008) to the case

where the hazard rate for price changes λ changes through time. In particular, we will assume

43.2% corresponds to what we call “pure stock-out” items, that is, goods are identified in the data set as
out of stock in the outlet; and the rest of the stock-outs, 7.3%, corresponds to items that were not sold by
the outlet at the time the price was to be collected. Pollsters arrive to each outlet with a form that includes
all items for which prices are to be collected and some outlets may not sell some of the items in the form.
The price of these items appears as imputed in the database.

5Price imputation is very seasonal with an average of 14% during the summer months of January, February
and March. Stock-outs are also very seasonal, with 35% of all stock-outs in the months of January to March.
The average rate of stock-outs items between January and March is around 14% while in the rest of the
months the average stock-out rate is 9.2%.
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Figure 8: Number Outlets per Good, and Frequencies of Substitution and Sales
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Note: For the homogenous goods during a month we count a sale or substitution if there was one
such event in any of the two fifteen days subperiods. Missing includes stock-outs.

that the changes in prices during the period between t − 1 and t, in our case a period of

two weeks, occurs with a constant probability per unit of time λt. We will index periods by

t = 0, 1, 2, ...., T , where T = 212 ≈ 9 × 24, since our data set covers about 9 years, and the

price observations are obtained twice a month (and half of it, for those prices gathered at

monthly frequency). Our goal is to estimate this probability rate for each half-month period

(or for each month) in our data set. We now describe the different assumptions regarding

missing price quotes, sales flags and substitution of products that we use for the estimation of

the frequencies λ for each good categories separately. After establishing all the assumptions

that allow us to write the likelihood function for these estimations we present four methods

to estimate an aggregated frequency of price adjustment at each time period.

4.1 Main Assumptions and Definitions

We describe the assumptions used to estimate the probability of a price change. If between

two observed prices there are some missing prices we use the following assumption. If the

two observed prices are exactly equal we assume there has been no changes in prices in any

times between these dates. This is the same assumption as in Klenow and Kryvtsov (2008).

Instead, if the two observed prices are different we assume there has been at least one change

in prices in between. The first assumption allow us to complete the missing prices in between
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two observed prices that are equal. From here on, assume that the missing prices in such

string of prices have been replaced.

We will refer from now on to the sequence of prices between two different observed prices

as a spell of constant prices, or for short a spell of prices. Without any missing prices, a spell

of constant prices is just a sequence of repeated prices ending with a different price. Notice

that the last (observed) price in a spell of constant prices is the first price of the next spell.

Next we describe the possible patterns of prices, and its implications for the estimation

of the probability of a price change. After following the procedure described above, all spell

of prices and missing observations have only two possible patterns. The first pattern is a

spell of prices ending with a price change, but with no missing observations. We consider

the second pattern in the following section, where we deal with the effect of missing prices.

Consider the following example for a spell for an outlet i that contains no missing prices nor

substitutions:

Table 1: Example of a spell of constant prices without missing prices

pt 10 10 10 10 10 15
t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5︷︸︸︷

λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

It y 0 0 0 0 1
γt y 1 1 1 1 1

The braces on top of the values of λ are meant to remind the reader that λt refers to the

constant probability of change in prices between t − 1 and t. The indicator Iit adopts the

value one if, in outlet i, the price in period t is different from the price at period t− 1, and

zero otherwise, except for the first temporal period of the first string of prices where it is

missing6. In this example we have exactly no changes for the first four periods and at least

one change in the next period. The probability of observing this completed spell of constant

prices is thus:7

P = e−λt+1 × e−λt+2 × e−λt+3 × e−λt+4 ×
(
1− e−λt+5

)
(13)

It follows that in this simple case, assuming all the outlets selling the same good have the

6We also include the indicator γt, which we explain below, for completeness.
7We assume that the number of price changes between t− 1 and t follows a homogeneous Poisson process

with arrival rate λt per unit of time. The probability of k occurrences is e−λλk/k! and the waiting time
between occurrences follows an exponential distribution.
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same λj, the likelihood function of prices observed for product j is

Lj =
∏
i∈Oj

[
e−λj,t

](1−Iit) × [1− eλj,t−τ ]Iit (14)

The maximum likelihood estimator of the arrival rate of price changes for product j

between times t and t+1 in the simple case without missing prices and without substitutions

is

λj,t+1 = log

( ∑
i∈Oj 1∑

i∈Oj (1− Iit)

)
= −log(1− fjt) (15)

where we let Oj denote the set of the outlets i of the product j and fjt is the fraction of

outlets of good j that changed prices in period t. In words, λj,t+1 is the log of the ratio of

the number of outlets to the number of outlets that have not changed the price between t

and t + 1. Thus λj,t+1 ranges between zero, if no outlets have change prices, and infinite if

all outlets have changed prices. The probability of at least one change in prices in period t

for product j is 1− e−λjt = fjt.

4.2 Incorporating information on Missing Prices

Now we consider the case where there are some missing prices before the price change, but

we postpone the discussion of the effect of price substitutions.

In general, a spell of constant prices is a sequence of n + 1 prices that starts with an

observed price pt, possibly followed by a series of prices all equal to pt, then followed, possibly,

by a series of missing prices, that finally ends with an observed price at pt+n that differs from

the value of the initial price pt. Notice that while we also refer to this sequence of prices as

a spell of constant prices, it can include more than one price change if there were missing

observations, a topic to which we return in detail below.

To deal with missing prices, the interesting patterns for a spell of constant prices are

those which end with a price change, but that contain some missing price(s) just before the

end of the spell. For example, consider the following spell of prices for an outlet, i:

where an x means that the variable is not defined for that case, the m denotes a miss-

ing/imputed price and the y denotes that for indicator I and counter γ the first observation

in the spell of prices is missing because it depends on the prices in period t − 1 which are

not in the information of the table. This example shows exactly no changes in the first four

periods and at least one change sometime during the next three periods. The probability of
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Table 2: Example of a spell of constant prices with observed and missing prices

pt 10 10 10 10 10 m m 15

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7︷︸︸︷
λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

︷︸︸︷
λt+6

︷︸︸︷
λt+7

It y 0 0 0 0 x x 1

γt y 1 1 1 1 x x 3

χt 0 0 0 0 0 1 1 0

observing this spell is:

P = e−λt+1 × e−λt+2 × e−λt+3 × e−λt+4 ×
(
1− e−λt+5 × e−λt+6 × e−λt+7

)
(16)

The first four products are the probability of no change during the first four periods, and

the last term is the probability of at least one change during the last three periods. The

second term is the complement of the probability of no change in prices during the last three

periods.

The likelihood of the sample of T periods (with T + 1 prices) of all the outlets for the

good j –denoted by the set Oj– is the product over all outlets i of the product of all spells

for outlet i of the probability equation (16). To write the likelihood we define an indicator,

χit, and a counter γit. The indicator χit adopts the value one if a price is missing for outlet

i in period t, and zero otherwise. The value of γt counts the number of periods between two

non-missing prices. The counter γit is Klenow and Kryvtsov (2008) duration clock . Then

the likelihood function of the prices observed for product j is:

Lj =
∏
i∈Oj

T∏
t=1

[
e−λj,tγit

](1−Iit)(1−χit) × [1− e−∑γit−1
τ=0 λj,t−τ

]Iit(1−χit)
(17)

Since the λ’s are the probability of a price change and they are indexed at the end of a

period, the first temporal observation of prices at t = 0 does not enter the likelihood. The

log likelihood is:

`j =
∑
i∈Oj

(
T∑
t=1

(1− χit)(1− Iit)× (−λj,tγit) +
T∑
t=1

(1− χit)Iit ln
[
1− e−

∑γit−1
τ=0 λj,t−τ

])
(18)

To compute the contribution to the likelihood of a given value of λj,t for t = 1, ..., T we

find convenient to introduce two extra counters: κit and ηit for any period t in which prices
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are missing/imputed. The variable κit counts the number of periods since the beginning

of a string of missing/imputed prices. The variable ηit counts the number of periods of

missing/imputed prices until the next price is observed. For example, consider the string of

prices in Table 3.

Table 3: Example of a spell of constant prices, w/ missing prices and counters

p 10 10 m m m m m 15

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7
λt+1 λt+2 λt+3 λt+4 λt+5 λt+6 λt+7

I y 0 x x x x x 1

χ 0 0 1 1 1 1 1 0

γ y 1 x x x x x 6

κ x x 1 2 3 4 5 x

η x x 5 4 3 2 1 x

Table 3 shows an example of a spell of constant prices for a given variety and a given

outlet. In equation (19) we highlight the contribution to the log-likelihood of the value of λt

for a given outlet i:

`j = · · ·+ (1− χit)(1− Iit)× (−λj,tγit) + (1− χit)Iit ln
[
1− e−

∑γit−1
τ=0 λj,t−τ

]
+ χit ln

[
1− e−(

∑κit−1
τ=0 λj,t−τ+

∑ηit
τ=1 λj,t+τ

]
+ · · · . (19)

The first two terms have the contribution to the likelihood of λj,t, if the price at time t is not

missing. The first case corresponds to a price at the beginning of the spell of constant prices.

The second to a case where the price is the last one of the spell, and uses γit to be able to

write the corresponding probability. The third term, correspond to the contribution of λj,t,

if the price at time t is missing, and uses κit, and ηit to write the corresponding probability.

Using equation (19) it is easy to write the FOC with respect to λj,t of the sample as:

∂ `j
∂ λj,t

=
∑
i∈Oj

(1− χit) (1− Iit)× (−γit) +
∑
i∈Oj

(1− χit) Iit
1

e(
∑γit−1
τ=0 λj,t−τ) − 1

+
∑
i∈Oj

χit
1

e(
∑κit−1
τ=0 λj,t−τ+

∑ηit
τ=1 λj,t+τ) − 1

= 0 , (20)

for t = 1, . . . , T .
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Roughly speaking the estimator for λj,t computes the ratio of the number of outlets i that

a time t have change the prices with those that have not change prices or that have missing

prices. This approximation is exact if no outlet has a missing/imputed price at period t or

before. In this case χis = 0 for s = 1, 2, ..., t for all i ∈ Oj, then equation (20) becomes

∑
i∈Oj

(1− Iit)× γit =
∑
i∈Oj

[
Iit

e
∑γit−1
τ=0 λj,t−τ − 1

]
,

which, if we make λj,t = λj,t−1 = ... = λj,t−γit+1 is the same expression than in Klenow

and Kryvtsov (2008). In the case of no missing observations, and where all the λ′s are as-

sumed to be the same, this maximum likelihood estimator coincide with the simple estimator

introduced in equation (15).

4.3 Incorporating Missing Prices and Sales

Our data contains a flag indicating whether an item was on sale. We consider a procedure

that disregards the changes in prices that occur during a sale. The idea behind this procedure

is that sales are anomalies for the point of view of some models of price adjustment, and hence

they are not counted as price changes. To explain this assumption we write an hypothetical

example:

Table 4: Example of a spell of constant prices removing sales

pt 10 10 10 m 8 15
t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5︷︸︸︷

λt+1

︷︸︸︷
λt+2

︷︸︸︷
λt+3

︷︸︸︷
λt+4

︷︸︸︷
λt+5

It y 0 0 0 0 1
at y 0 0 0 1 0

In Table 4 the indicator at takes the value of one if the good is on sale on period t and if

the price at the time t is smaller than the previous recorded price. In this case, the price in

periods t+3 and t+4 is changed to 10, the value of the previous recorded price. The general

principle is to consider a string of recorded prices, possible missing values, and a price that

has a sale flag, and replace the price of the string of missing values and the period with a sale

flag for the previous recorded price. In other words, we replace the price at the period with

a sale flag for the previous recorded price and then using our first assumption on missing

prices we complete the missing price in between two prices that are equal. When the sales

are disregarded the number and duration of price spells can change. Once this procedure is
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implemented, the likelihood is the one presented above using the modified price series -indeed

in Table 4 the indicator It is the one that corresponds to the modified price string. We refer

to the corresponding estimates as those that excludes sale quotes. This is a procedure used

by many, e.g. Klenow and Kryvtsov (2008). By construction with this method the estimates

for λ will be smaller.

4.4 Incorporating Missing Prices and Price Substitutions

In this section we discuss different assumptions on the treatment of missing data and good

substitutions that allow us to construct four estimators of the frequency of price changes that

we report later on.

We use the indicators ẽit, e
∗
it, ēit to consider two different assumptions on how to treat a

price spell that ends in some missing values or price substitutions. In particular, consider

the case of a substitution of a product or a missing price. As explained above, our data set

contains the information of whether the characteristic of the product sold at the outlet has

changed and was subsequently substituted by a similar product. We also have information

on whether the price is missing (mostly due to a stock-out). To be concrete, consider the

following example of a spell of constant prices in Table 5. In this table, and sit = 1 denotes

the period where a price substitution has occurred. Thus, the example has a spell of 9 prices,

with two periods (3 prices) with no change in prices, then 5 periods with missing prices, and

finally in the last period there is an observed price that correspond to a substitution of the

good.

Table 5: Example: spell of constant prices w/ counters for substitutions

p 10 10 10 m m m m 15

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7
λt+1 λt+2 λt+3 λt+4 λt+5 λt+6 λt+7

I y 0 x x x x x 1

χ 0 0 0 1 1 1 1 0

s y 0 0 0 0 0 0 1

ẽ y 0 0 0 0 0 0 0

e∗ y 1 1 1 1 1 1 1

ē y 0 0 1 1 1 1 1

As in the previous examples, for the first observation an y indicates that the value of the

indicator cannot be decided based on the information in the table.
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The issue is the interpretation of when and whether there has been a price change in

the previous price spell. One interpretation is that there has been a price change somewhere

between periods t+2 and t+7. A different interpretation is that, because the price spell ends

with the substitution of the good, the price has not changed. The idea for this interpretation

is that if the good would have not changed, the price could have been constant beyond t+ 7.

The next three cases explain how to implement the first interpretation, and two ways to

implement the second one. The last two cases present two simple estimators, one that treats

quotes with substitutions as regular price changes, and one that exclude them.

1. We disregard the information of the substitution of a good, and proceed as we have

done so far: including all price quotes as if the good have been not changed. In the

previous example, it consists on assuming that the price has changed between periods

t + 2 and t + 7. In this case we say that the probability of observing the spell in the

table is given by:

P = e−λt+1 × e−λt+2 ×
(
1− e−λt+3−λt+4−λt+5−λt+6−λt+7

)
(21)

In this case we set ẽit = 0 for all periods, since we don’t want to exclude any part of

this price spell. We refer to these assumptions as including all price quotes.

2. We follow Klenow and Kryvtsov (2008) and others and exclude completely any spell

of prices that ends with a substitution of a product. We implement this by defining

the indicator e∗it = 1 for any price corresponding to this spell, i.e. we exclude all the

observations –with the exception of the first price, which is relevant for the previous

string. In this case we have no associated probability for this spell. The idea behind this

treatment is that if there would have been no substitution of the good the price could

have stayed constant even beyond t + 7. We refer to these assumptions as excluding

substitution spells for short.

3. We introduce a new way to handle this information based on the following underlying

assumption: if a spell of constant prices ends up in a substitution we interpret that the

product has changed, and hence we cannot infer from the observed price whether the

price has changed or not, as in the previous case. Yet, unlike the previous case, we do

not discard the information at the beginning of the string, where the product was the

same and its price was not changing. In this case the associated probability for this

spell is:

P = e−λt+1 × e−λt+2 (22)
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In this case we use the indicator ēit = 0 for the first two observations, among which we

know that there was no price change, and ēit = 1 for the rest of the observations where

we can’t conclude if there was a price change for the same product. We refer to these

assumptions as excluding substitution quotes for short.

4. We present an alternative estimator to the maximum likelihood, which has the advan-

tage of being simpler to describe and understand. This estimator imitates the one for

the case where there are no missing price quotes in equation (15), and simply excludes

the values of the missing. In this case, this estimator is:

λj,t+1 = log

( ∑
i∈Oj (1− χt) (1− χt+1)∑

i∈Oj (1− χt) (1− χt+1) (1− Iit)

)
(23)

In words, λj,t+1 is a non-linear transformation of the probability of the change of prices.

This probability is estimated as the ratio of the outlets that have changed prices over

all the outlets, including only those price quotes that are simultaneously not missing

at t and t + 1. While this estimator is simpler than the maximum likelihood, it does

not use all the information of the missing values efficiently. We refer to this estimator

as the simple estimator.

Finally, to completely state the notation for the likelihood function, we use the indicator

ζ to deal with missing prices at the beginning of the sample. In particular, if for an outlet i

the sample starts with n+1 missing prices, we exclude these observations from the likelihood

since we cannot determine the previous price. We do this by setting the indicator ζit = 1 for

t = 0, 1, ..., n. Thus, depending of the assumption, the exclusion indicator e takes the values

given by ẽ, ē or e∗, besides the value of 1 for all the missing observations at the beginning of

the sample. The log likelihood function is then:

`j =
∑
i∈Oj

T∑
t=1

(1− eit)
(

(1− χit)(1− Iit) (−λj,tγit) + (1− χit)Iit ln
[
1− e−

∑γit−1
τ=0 λj,t−τ

])
(24)
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The first order condition for λj,t, using the counters κ and η is:

∂ `j
∂ λj,t

=
∑
i∈Oj

(1− χit) (1− eit) (1− Iit)× (−γit)+

∑
i∈Oj

(1− χit) (1− eit) Iit
1

e(
∑γit−1
τ=0 λj,t−τ) − 1

+
∑
i∈Oj

χit (1− eit)
1

e(
∑κit−1
τ=0 λj,t−τ+

∑ηit
τ=1 λj,t+τ) − 1

= 0 , (25)

for t = 1, . . . , T .

4.5 Aggregation: Weighted Average, Median, Weighted Median

and Pooled Maximum Likelihood

In this section we deal with the issue of aggregation. So far we have described how to estimate

the frequency of price adjustment for each good category separately.

Remember that those goods that fall in the homogenous goods category are sampled

bi-monthly and so will be our estimates. In this way, the first step in order to aggregate all

categories is to convert them into monthly estimates, which is done simply by adding the two

estimates in any given month (this results from the exponential assumption for our likelihood

function).

Next, we compute three aggregated estimations. First, we calculate the weighted average

of all monthly estimates (both differentiated and homogenous goods), where the weights are

the corresponding expenditure shares of each good category.

λt =
N∑
i=1

ωiλit

For future reference, we will call this weighted average or simply WA, followed by the spe-

cific treatment of missing, sales and substitutions. For example, Weighted average excluding

sales.

The other two estimates are the median and weighted median of all monthly estimates

(both differentiated and homogenous goods). The aggregated median estimation (median for

short) consists in taking the median λ of all products at each time period. The aggregate

weighted median estimation is computed by sorting, at each time period, the expenditure

weights of each product by the value of their associated λ from lowest to highest. Then we

compute the accumulated sum of the weights until reaching 0.5. The aggregate weighted
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median of the frequency of price adjustment is the associated λ of the product whose weight

makes the accumulated sum equal to or grater than 0.5. We refer to this estimate as weighted

median.

Finally we consider a last aggregated estimation. As mentioned, the estimates for the

frequency of price changes presented allow the value of λ to depend on the time period and

the good. We now consider an estimate based on the assumption that the frequency price

changes is common for all goods, but that that it can change between time periods. This

simply puts together the outlets for all goods in our sample. Thus, the log likelihood is:

`(λ1, ..., λT ) =
N∑
j=1

`j (λ1, ..., λT )

where the `j (λ1, ..., λT ) corresponding to the log likelihood for each assumption about missing

prices and or price substitutions as it has been introduced in the previous sections, and where

N is the number of goods in our sample. We refer to this estimator as the pooled maximum

likelihood or for short PML. Likewise, when we assume that all goods have the same frequency

of price changes but use the simple estimator for λ, we refer to it as simple pooled estimator.

5 Estimated Frequency of Price Changes and Inflation

In this section we report estimates of the frequency of price changes λt and we describe how it

co-moves with inflation πt. We organize the presentation around the theoretical predictions

of menu cost models discussed in Section 2: the elasticity of the frequency of price changes

with respect to inflation is low for low rates of inflation and it is close to 2/3 for high levels

of inflation.

We report monthly estimates of λt using different sets of goods: homogenous goods,

differentiated goods, all goods together, and different levels of aggregation by industry. We

check the robustness of our estimates to different assumptions and exclusions regarding the

presence of sales, product substitutions and missing prices (as explained in Section 4.1 to

Section 4.5).

We first concentrate the description of the results on the estimate that is easier to describe,

which we label as simple estimator. In Figure 9 we plot the monthly time series of the simple

estimator as well as of the inflation rate. For this figure we assume that all homogeneous and

all differentiated goods have the same frequency of price changes, described as pooled simple

estimator in Section 4.5, we aggregate the bi-weekly estimates8 of the homogenous goods to a

8The monthly frequency is the sum of the bi-weekly frequencies of each month
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monthly frequency, and we plot the weighted average of these two estimators, using the share

of household expenditures as weights. We remind the reader that the “simple estimator” just

counts the fraction of price changes in a period of time, and transform this in a rate per unit

of time λ, see equation (15) in Section 4.1. We refer to λ as the instantaneous frequency of

price changes, which has the dimension of the number of price changes per month.

Figure 9: Estimated Frequency of Price Changes λ and Inflation Rates
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Note: Simple estimator of λ, λ̂ = − log(1 − ft), where ft is the fraction of outlets that changed
price in period t. λ is estimated separately for homogeneous goods (bi-weekly sample) and for
differentiated goods (monthly sample). Homogenous goods frequencies are converted to monthly
by adding the bi-weekly ones for each month pair. The aggregate number is obtained by averaging
with the respective expenditure shares in the Argentine CPI. Inflation is the average of the log-
difference of monthly prices weighted by expenditure shares.

It is clear from Figure 9 that the frequency of price changes λ and the contemporaneous

inflation rate π are highly correlated. For instance, during the mid-1989 hyperinflation the
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implied expected duration of a price spell is close to one week; while after 1993 the implied

expected duration is close to half a year.

Next in Figure 10, we produce a scatter plot using log scale for both variables.9 motivated

by the theoretical results of Section 2, which suggests no relationship between the two when

the inflation rate is low, and an elasticity of λ with respect to inflation close to 2/3 when

inflation is high. On the right axis we indicate the implied instantaneous duration, i.e. 1/λ.

In interpreting this figure, as well as the other estimates presented below, it is worth noting

that 1/λt is the expected duration of prices at time t if λt will be unchanged into the future,

and provided that the probability of a price change is the same within the smaller period of

observation (1 month for differentiated goods, 2 weeks for homogeneous goods).

Motivated by the theoretical considerations of Section 2, as well as for the pattern we

think evident in this scatter plot, we fit the following statistical model to the data:

log λt = − log(dc) + η log max {πc, |πt|}+ εt (26)

where η is the elasticity of the frequency of price adjustments to inflation for high inflation,

πc is the threshold inflation rate below which the elasticity is zero, and dc is the implied

instantaneous duration at the threshold. We fit πc, dc, and η by Non Linear Least Squares

(NLLS). We note that the comparative static of the models discussed in Section 2 does not

imply a kink as the one in equation (26), we merely use this specification because it is a low

dimensional representation of interesting patterns in the data that provides a good fit and

has properties at the extreme values that are consistent with our interpretation of the theory.

As indicated in Figure 10 the fitted value of the elasticity is η = 0.59, which to us is

surprisingly close to the theoretical value of 2/3. The fitted value for the threshold inflation

πc is 6.1%. The line we plot in Figure 10 is flat by construction for the periods with πt < πc.

In Section 5.4 we study more carefully the relationship between inflation pit and λt for low

inflation periods.

5.1 Sensitivity Analysis with Aggregate Data

This subsection reports the sensitivity of the estimates of the elasticity η, the threshold

inflation πc and the duration at low inflation dc obtained with the simple estimator to different

treatments of missing data, sales, product substitution and broad aggregation levels. The

results obtained from using the different methodologies for estimating the frequencies of price

adjustment described in Section 4 are presented in Table 6.

Table 6 reports estimates of the three parameters of equation (26) for the sample of

9See Section 2 for the caveats on these results and on the interpretation of contemporaneous correlations.
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Figure 10: Relationship between the frequency of price changes λ and the inflation rate
(pooled simple estimator)
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Note: Simple estimator of λ, λ̂ = − log(1 − ft), where ft is the fraction of outlets that changed
price in period t. λ is estimated separately for homogeneous goods (bi-weekly sample) and for
differentiated goods (monthly sample). Homogenous goods frequencies are converted to monthly
by adding the bi-weekly ones for each month pair. The aggregate number is obtained by averaging
with the respective expenditure shares in the Argentine CPI. Inflation is the average of the log-
difference of monthly prices weighted by expenditure shares. The parameters η and πc are estimated
fitting log λt = − log(dc) + η log max {πc, |πt|}+ εt with non linear least squares.
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differentiated goods (monthly), for the sample of homogeneous goods (bi-weekly) and for

the aggregate. The latter is obtained by averaging the estimated λs with their expenditure

shares after converting the bi-weekly estimates to monthly ones.

The first and second blocks of columns show the inflation thresholds and elasticities as

explained in the earlier paragraphs. The third block of columns shows the implied duration

of price spells when inflation is low (below the threshold) under the assumption that the

frequency of price adjustment is constant.

The first line in Table 6 corresponds to the pooled simple estimator reported in Figure 10.

The estimates of the elasticity of the frequency of price adjustment with respect to inflation,

η, are very similar for the λs in the two samples and for the aggregate λ. The estimates

for the threshold inflation and for the expected duration at the threshold differ in the two

samples. Threshold inflation is around 4% per year for differentiated goods with an expected

duration of eight months. For homogeneous goods the threshold inflation climbs to 12%

per year and the expected duration falls to under three months. For the aggregate λ the

threshold inflation is 6% per year and the expected duration is just over four months.

The other lines in the table provide estimates of the three parameters of interest for dif-

ferent aggregation methods and for the different treatments of missing observations, product

substitutions and sales described in Section 4. The values of the threshold inflation are robust

to all these different estimation techniques for the λs. The same is true for the elasticities,

η, with the caveat that when we aggregate using medians the elasticity climbs to 0.8 for

differentiated goods, 0.9 for homogeneous goods and 0.8 for the aggregate.

The treatment of sales and substitutions does not seem to have an effect on the estimates

of πc and η, but do affect the estimates of the expected duration of price spells when inflation

is below, dc, as in other papers in the literature (see Klenow and Malin (2011)). Durations

increase from 4.4 months to 5.5 months when sales price quotes are replaced by the price

quote of the previous regular price. In Klenow and Kryvtsov (2008) durations go from 2.2

months to 2.8 after the sales treatment and in Nakamura and Steinsson (2008) they go from

4.2 months to 3.2. Time series for frequency of substitution, sales and missing values in the

sample can be seen in Figure 8 and in Figure 23 in Section E.

What accounts for the differences in the estimates for the threshold inflation and for the

implied duration at the threshold between the sample of differentiated and homogeneous

goods? Expected durations are much higher for differentiated goods than for homogenous

goods. In principle, we believe that this discrepancy can be attributed to two features: an

intrinsic difference between the type of goods or due to the fact that the prices of homogenous

goods are sampled bi-monthly and prices for differentiated goods once a month. For the

interested reader, in Appendix D we try to elucidate this issue by conducting some further
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Table 6: Estimates of Slope η, Threshold Inflation πc, and Expected Duration dc.

Aggregation Annual Inflation Elasticity Expected Duration
Threshold πc η at threshold dc

Diff. Hom. Agg Diff. Hom. Agg Diff. Hom. Agg

A. Simple Estimator (No information from missing price quotes)

Pooled 3.8 12.5 6.1 0.63 0.62 0.59 8.5 2.7 4.4
Weighted Average 3.8 12.4 6.1 0.64 0.64 0.60 8.0 2.7 4.3
Median 3.9 12.5 6.2 0.79 0.89 0.83 13.2 11.5 12
Weighted Median 3.9 12.6 6.1 0.79 0.87 0.82 11.3 9.5 10.6

Pooled (excludes sales) 4.0 11.8 6.0 0.63 0.65 0.61 9.3 3.6 5.5

B. All price quotes

Pooled 3.8 12.5 6.2 0.63 0.61 0.58 8.8 2.7 4.5
Weighted Average 3.5 11.9 5.8 0.63 0.61 0.58 8.4 2.7 4.4
Median 3.9 12.0 6.1 0.78 0.88 0.80 13.3 6 8.9
Weighted Median 3.9 12.4 6.2 0.78 0.86 0.79 11.6 4.8 7.3

C. Excludes substitution quotes

Pooled 3.8 12.6 6.4 0.67 0.63 0.61 10.6 3 5
Weighted Average 3.5 11.9 5.8 0.66 0.62 0.60 10 2.9 4.8
Median 3.9 11.9 6 0.84 0.92 0.87 16.8 14.4 15.6
Weighted Median 3.8 12.3 6 0.82 0.9 0.85 14.4 10.9 13.2

C. Excludes substitution spells

Pooled 3.6 12.4 6.0 0.65 0.62 0.59 9.5 2.8 4.6
Weighted Average 3.5 11.7 5.6 0.65 0.61 0.58 8.7 2.8 4.5
Median 3.8 11.9 5.7 0.81 0.9 0.84 14.4 13.2 14.3
Weighted Median 3.8 12.1 5.9 0.82 0.88 0.85 13.2 10.2 11.6

D. Excludes substitution and sale quotes

Pooled 4.3 11.7 6.0 0.64 0.64 0.60 9.5 3.6 5.6
Weighted Average
Median
Weighted Median

Note: Diff. denotes differentiated goods, which are samples once a month. Hom. denotes homogenous goods,
which are sampled twice a moth. Agg denotes the weighted average of the Differentiated and Homogenous
goods, with weights given by the expenditure shares and where the Homogenous goods have been aggregated
to monthly frequencies. For each case we use NLLS to fit log λt = − log(dc) + η log (max {|πt|, πc}) + εt . The
annual expected duration at the threshold dc is expressed in months.
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exercises which point both to a violation of the assumption of the hazard rate of price changes

being constant in the duration of the price spell, and thus making sampling periodicity not

innocuous and homogeneous goods having higher idiosyncratic volatility as well.

5.2 Frequency of price changes and inflation: estimation at a more

disaggregated level

As Table 6 indicates that the frequency of price adjustment could be very different for different

goods, in this section we explore the robustness of the estimates of the parameters of interest

reported in the table to fitting equation (26) at different levels of aggregation. To do this, we

estimated λ pooling the data for all the products in an industry using the simple estimator.

We do this at five and six digits of aggregation.10 Once we estimated λ industry by industry

we fit equation (26) pooling the estimated λs for all industries and we also fit equation (26)

industry by industry and analyze the distribution of the industry estimates of the triplets

(η, πc, dc).

In this section we also look at the co-movements between the heterogeneity between the

estimated frequencies of price adjustment and inflation. The menu cost model predicts that if

the heterogeneity in the frequency of price adjustments is due to heterogeneous idiosyncratic

shocks, as inflation rises and aggregate shocks become more important than idiosyncratic

ones we should expect that the heterogeneity of the estimates of λ would decrease with

inflation. We analyze this hypothesis at the end of the section.

Figure 11 and Figure 12 plot the estimated values of λ against the contemporaneous

inflation of each group of goods, both in log scale. Figure 11 shows a scatter plot of the

estimated λ for differentiated goods and Figure 12 one for the homogeneous goods, both

of them at the 5 digit aggregation level. In the right axis we have also included several

values of the implied instantaneous duration. The area of each circle is proportional to the

square root of the number of outlets in the 5-digit group for the date of the corresponding

inflation-frequency pair.

We observe that in each one, Figure 11 and Figure 12, there is a line of points for which

all outlets changed prices. This stems from the fact that at this level of disaggregation there

are several goods for which for a particular period (a month for differentiated, and two weeks

for homogenous goods) all stores changed their price. The simple estimator (equation (23)

in this case yields an estimate of λ equal to infinity, but with an equally large standard

error!. We have included these values in the scatter plots and mark them correspondingly.

10 As described in Section 3 goods are classified at different level of aggregation. At five digits of aggregation
the entries are categories such as dried pasta, fresh pasta, fresh pork, frozen pork. At six digits the entries
are fresh gnocchi, fresh ravioli, fresh pork ribs, fresh pork legs.
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Figure 11: Frequency of Price Changes and Inflation for differentiated goods sampled once a
month estimated at a 5-digit disaggregation level.

0.1% 1% 10% 100% 1000% 10,000%

1/24

1/12

1/6

1

4

8

15

πc = 3.6, η = 0.76

1200 × | logP (t) − logP (t − 1) | abs. value of c.c. % anual inflation rate

fr
eq

u
en

cy
o
f
p
ri

ce
ch

a
n
g
es

p
er

m
o
n
th

λ

2 years

1 year

6 months

1 months

1 week

1/2 week

All outlets changed prices

Note: Each dot is a (πt, λt) pair, where πt is the inflation rate of each industry and λ is the simple
estimator of the industry monthly frequency of price adjustment for each industry. When all outlets in
an industry change prices in a month λ is infinity, which we set to λ = 15. We fit log λt = − log(dc) +
η log (max {|πt|, πc}) + εt . The regression excludes the 1.9% of top coded observations. The size of
each circle is proportional to the square root of the number of outlets used in the estimation of the
corresponding λ

For differentiated goods, which are sampled monthly, we have that about 1.9% of the month-

industry pairs for which all outlets have changed prices. For homogenous goods sampled

every two weeks we have 1.4% of month-industry pairs for which all outlets have changed
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prices. These observations are not visible in Figure 12 because the circle is very small relative

to the others due to the small number of outlets.

Each graph shows the fitted line of equation (26), for which we exclude the industry-

periods for which all store change prices. The fitted values of the elasticity η and thresholds

dc, π
c are similar to the ones reported for the data aggregated at the level of all the differen-

tiated or all the homogenous goods.

The results when we estimate the triplets (η, πc, dc) in equation (26) for each 5 or 6 digit

aggregation industry separately are reported in Table 7 and in Table 8. We present summary

statistics for the distribution of the fitted values of the elasticity η, threshold inflation πc and

duration for low inflation dc. Table 7 display the distribution of estimates using aggregate

inflation as the independent variable, while Table 8 reports the estimates using the inflation

rate of each 5 and 6 digit aggregation industry.

Table 7: Distribution of fitted η, πc and dc at 5 and 6 digit level. Using aggregate inflation

Annual Inflation Elasticity Duration Threshold
Threshold πc η dc (years)

Diff . Hom. Diff. Hom. Diff. Hom.
Digits 6 5 6 5 6 5 6 5 6 5 6 5
Mean 5.5% 5.7% 10.5% 11.6% 0.68 0.78 0.81 0.78 0.88 1.1 0.27 0.42

Median 3.8% 3.8% 11.3% 11.9% 0.68 0.78 0.86 0.82 0.79 0.99 0.21 0.42

Perc 10 2.8% 3.1% 6.7% 9.7% 0.57 0.6 0.6 0.37 0.49 0.4 0.12 0.086
Perc 25 3.3% 3.3% 9.0% 11.1% 0.66 0.67 0.71 0.77 0.71 0.6 0.18 0.22
Perc 75 4.3% 4.4% 12.1% 12.8% 0.75 0.86 0.91 0.91 0.95 1.6 0.32 0.6
Perc 90 12.2% 9.8% 12.6% 13.3% 0.77 0.91 0.91 0.92 1.5 2 0.56 0.8

Std. Dev. 6.1% 6.1% 2.4% 1.8% 0.073 0.14 0.13 0.2 0.37 0.66 0.17 0.25

Note: Diff. denotes differentiated goods, which are samples once a month. Hom. denotes homogenous goods,
which are sampled twice a moth. For each case we use NLLS to fit log λt = − log(dc)+η log (max {|πt|, πc})+εt.
The annual expected duration at the threshold dc is expressed in years, i.e. dc divided by 12.

The statistics reported in Table 7 and Table 8 are clustered around the estimates obtained

using aggregate data. For instance, the mean and median of the fitted value of the elasticity η

are slightly higher than the estimates obtained pooling all the data, using the same method,

as can be seen by comparing the rows of Table 6 for the simple estimator aggregated using

the weighted average. The procedure in Table 6 averages the estimated λ across industries

for each month first and then estimates the aggregate elasticity η, while the procedure in

this section estimates η for each industry first and then averages the estimated elasticities.

Comparing the results of Table 7 with the one of Table 8, the estimated elasticities η are
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Figure 12: Frequency of Price Changes and Inflation for homogeneous goods sampled twice
a month estimated at a 5-digit disaggregation level.
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Note: Each dot is a (πt, λt) pair, where πt is the inflation rate of each industry and λ is the sim-
ple estimator of the industry monthly frequency of price adjustment for each industry. When all
outlets in an industry change prices in a month λ is infinity, which we set to λ = 30. We fit
log λt = − log(dc) + η log (max {|πt|, πc}) + εt . The regression excludes the 1.4% of top coded ob-
servations.The size of each circle is proportional to the square root of the number of outlets used in the
estimation of the corresponding λ

slightly higher using the inflation of the industry, but the results are quite similar.

Turning to the relation between the dispersion of the industry λs and inflation Figure 11,

Figure 12 show a pattern in which as inflation increases the dispersion of the estimated in-
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Table 8: Distribution of fitted η, πc and dc at 5 and 6 digit level. Using each good’s inflation

Annual Inflation Elasticity Duration Threshold
Threshold πc η dc (years)

Diff . Hom. Diff. Hom. Diff. Hom.
Digits 6 5 6 5 6 5 6 5 6 5 6 5
Mean 4.9% 5.7% 13.1% 10.1% 0.7 0.81 0.82 0.7 0.98 1.4 0.25 0.49

Median 3.6% 3.6% 13.1% 6.7% 0.7 0.77 0.67 0.69 0.79 1.1 0.17 0.45
Perc 10 2.7% 1.8% 5.1% 2.8% 0.59 0.6 0.61 0.43 0.51 0.5 0.12 0.094
Perc 25 3.1% 2.4% 6.8% 4.8% 0.63 0.69 0.62 0.62 0.72 0.63 0.13 0.15
Perc 75 6.5% 7.2% 17.5% 13.0% 0.8 0.91 0.89 0.73 1.1 1.9 0.32 0.76
Perc 90 9.5% 12.8% 25.0% 25.0% 0.81 1 1.5 0.78 1.9 2.4 0.63 0.91

Std. Dev. 2.7% 5.1% 7.8% 8.1% 0.087 0.17 0.39 0.25 0.56 1.1 0.22 0.33

Note: Diff. denotes differentiated goods, which are samples once a month. Hom. denotes homogenous goods,
which are sampled twice a moth. For each case we use NLLS to fit log λt = − log(dc)+η log (max {|πt|, πc})+εt.
The annual expected duration at the threshold dc is expressed in years, i.e. dc divided by 12.

stantaneous frequency of price changes across industries decreases. To document this pattern

we split the range of inflation about the critical value πc fitted before into equally spaced

(in logs) intervals. For each of these intervals we compute two measures of dispersion of the

five-digit implied instantaneous duration: the difference between the 25th percentile and the

75th percentile (in months) and the difference between the 10th and 90th percentile. We

compute these statistics, as opposed to standard deviation, because there are less sensitive

to estimates of infinite duration, which happens when in a month (or a two week periods) all

the outlets change prices.

Table 9 displays the estimates. Consistent with the estimates already presented, the

median duration for the differentiated goods are higher than the median duration for homo-

geneous goods for all inflation bins. For each type of goods we can see that the dispersion

falls with the level of inflation. We interpret this decrease in the dispersion of the durations

across industries as reflecting that as inflation increases, the industry specific factors (such

as differences in volatility, size of adjustment cost, elasticity of demand, etc) that can explain

cross sectional differences in duration are swamped by the common factor given by inflation.

We think that this evidence fits with the general theme of our approach.

5.3 Expected Inflation and the Frequency of Price Changes

The robustness check in this section pertains to the measure of inflation as opposed to our

estimates the frequencies of price adjustment. Theoretical models of price setting behavior,

such as the menu cost model, presented in Section 2, predict that firms will set prices and
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Table 9: Cross Industry Dispersion of Implied Duration

Differentiated Goods, sampled monthly

Inflation % p/year Median 15-75 pct 90-10 pct
From To Duration Duration Duration

0 3.6 5.8 11 24
3.6 13.3 7.9 8.7 20
13.3 49 3.9 3.5 7
49 181 1.1 0.74 1.5
181 667 0.46 0.33 0.6
667 2460 0.23 0.12 0.25

Homogeneous Goods, sampled every two weeks

Inflation % p/year Median 15-75 pct 90-10 pct
From To Duration Duration Duration

0 3.5 7.7 5.9 11
3.5 12 4.8 3.7 8
12 41 2.6 2.6 4.5
41 140 0.98 0.53 1.2
140 479 0.46 0.36 0.88
479 1640 0.26 0.079 0.17

Note: Durations are calculated as 1/λ, where λ is the “simple” estimator, and are expressed in months. Ranges
of inflations are equally spaced in logs, above the fitted “threshold” inflation πc. Estimated λ at the 5 digits
classification.
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inaction bands as a function of expected inflation. Our previous estimates of triplets (η, πc, dc)

in equation (26), however, where estimated using actual inflation data. We now study the

sensitivity of our results to forward looking measures of expected inflation. This might

be important since our sample includes a pronounced disinflation that might have been

anticipated by economic decision makers.

We will assume in this section that expected inflation is an average of the actual inflation

rate of the following kt months, where kt = n 1
λt

; that is

πe =
1

k

t+k∑
s=t

πs

We refer to n as the forward looking factor. Thus, as inflation falls (and implied durations

rise) in our sample agents put an increasing weight on future inflation.

Table 10: Estimates of elasticity η, threshold Inflation πc and implied duration dc for different
specifications of expected inflation.

Forward looking Annual Inflation Elasticity Implied Duration R2

factor Threshold πc η at threshold (months)

n = 0 6.3% 0.56 4.4 0.937
n = 0.5 4.4% 0.51 4.6 0.941
n = 1 3.9% 0.51 4.6 0.954
n = 1.5 3.8% 0.49 4.6 0.941
n = 2 3.5% 0.47 4.6 0.937

Note: Estimates of πc, η and 1
λ at πc with expected inflation πe = 1

k

∑t+k
s=t πs, where kt = n 1

λt
as the independent

variable. The estimates of λ are the weighted (by expenditure shares) average of the simple maximum likelihood
estimator for the samples of homogeneous and non-homogeneous goods. Inflation is the official inflation from
INDEC. For each case we use NLLS to fit log λt = − log(dc) + η log (max {|πt|, πc}) + εt . The annual expected
duration at the threshold dc is expressed in months.

Table 10 shows that the results presented in Table 6 are not very sensitive to estimating

equation (26) using a forward looking measure of inflation such as πe defined above. The first

row of the table shows the results when we use the actual rate of inflation. They differ slightly

from those of the pooled simple estimate in Table 6 because here we use the inflation rate

estimated by INDEC for the whole CPI instead of the inflation rate in our sample. We use

official CPI data because we need forward looking values of inflation at the end of the sample

that otherwise we cannot obtain. The following four rows shows that as expectations are

more forward looking the threshold inflation and the elasticity fall slightly and the implied
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duration at the threshold remains constant. The R2 of the regression is maximized for n = 1,

so that the best fit is when agents set expected inflation equal to the average inflation over

the implied duration of the fixed prices. All the estimates of the elasticity η are consistent

with the theoretical prediction in Section 2. Figure 13 illustrates the results of table for the

case of n = 1.

Figure 13: Expected Inflation and the Frequency of Price Changes.
Pooled Simple MLE of λ
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Note: Expected inflation in the horizontal axis is πe = 1
k

∑t+1/λ
s=t πs. Inflation is the official inflation

from INDEC. The estimates of λ are the weighted (by expenditure shares) average of the simple
maximum likelihood estimator for the samples of homogeneous and non-homogeneous goods. We
fit log λt = − log(dc) + η log (max {|πt|, πc}) + εt .
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5.4 Frequency of Price changes at low inflation

In this subsection we fit alternative statistical models to the {λt, πt} data to check on the

robustness of the simple representation in equation (26). We confirm that the elasticity of

λ with respect to inflation, η, for very high inflation is about 2/3, and that at low inflation

this elasticity is close to zero. We find some evidence consistent with a small semi-elasticity

of the λ with respect to inflation at zero. The range of inflations for which the frequency

of price changes are very weakly associated with inflation is imprecisely estimated, ranging

from 6% to 17% per year.

Table 11: Alternative Statistical Models of {λt, πt}

log λt = a+ εmin {πt − πc, 0}+ ν(max {πt − πc, 0})2

+ηmax {log πt − log πc, 0}+ ωt

Using aggregate inflation of differentiated and homogeneous

Case εA ν η R2 ∆λ % when
π = 0 to π = 1%B

|π| -5.8 - 0.59 0.96 -0.46%
includes π < 0 14.9 - 0.59 0.96 1.2%
|π| 103.6 5639 0.58 0.96 8.6%
includes π < 0 71.5 1626.5 0.57 0.96 6%

Using Expected inflation, based on CPIC

Case εA ν η R2 ∆λ % when
π = 0 to π = 1%B

|π| 37 - 0.6 0.94 3.1%
includes π < 0 33 - 0.61 0.94 2.7%
|π| 19 416 0.62 0.94 1.6%
includes π < 0 35.8 138 0.61 0.94 3%

A: Inflation is expressed in monthly percentage log points, i.e. π(t+1) = (logP (t+1)− logP (t)) where P (t+1)
and P (t) are the price levels in consecutive months. B: Percentage change in λ when inflation changes from 0
to 1% per year. C: Expected inflation is an average of the CPI inflation between the current period and future
periods, defined as in Section 5.3. We use factor n = 1.

Table 11 displays several of the fitted models. We use the pooled simple estimator for λ.
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We consider two different measures of inflation. The aggregate contemporaneous inflation

in the month from the goods in our sample, and the expected inflation, as described in

Section 5.3. For each case we consider statistical models that have a break at a value of

inflation πc. Below this value we fit a semi-log specification, and above this value we fit a

log-log specification. Specifically we fit:

log λt = a+ εmin {πt − πc, 0}+ ν(min {πt − πc, 0})2 + ηmax {log πt − log πc, 0}+ ωt . (27)

We fit this equation using NLLS. We consider a case where we replace inflation by the absolute

value of inflation, as discussed above, and a version where we leave inflation with its natural

sign. The motivation for using the absolute value of inflation is that in the symmetric case

analyzed in Section 2 the steady state effects of inflation on the frequency of price changes

are symmetric around zero inflation. We consider that the absolute value of inflation will

make more sense using expected inflation. In Figure 14 we display the scatter points and the

fitted line for the last case of Table 11.

From Table 11 we conclude the following. Allowing for a different effects of negative and

positive inflation on the frequency of price changes around π = 0 has zero or a marginal effect

on the fit of the points.11 The fitted values make clear that the elasticity is zero at π = 0

and the estimated semi-elasticities are small. Roughly speaking, a change of annual inflation

from 0 to 1% is associated with a percentage change in the frequency of price changes λ of

3% (and hence of -3% on duration).

6 Inflation and the Intensive and Extensive Margins of

Price Adjustments

In this section we decompose inflation into intensive and extensive margins for price increases

and decreases and describe how this decomposition varies with inflation. The behavior of

these variables is by and large consistent with the comparative statics of the menu cost model

and empirically support to the assumption about symmetry in Section 2.

The results are illustrated in Figure 15 and in Figure 16. Figure 15 describes how the

extensive margin of price adjustments, the frequencies of price increases and decreases for

homogeneous and differentiated goods, varies with inflation. The theoretical counterpart of

this figure from our numerical example is Figure 4 where we observe that for low inflation rates

11Since we don’t have a proper probabilistic model for this graphs we don’t report systematically standard
errors on ε, η, etc. Nevertheless, as a way to assess the fit of the regression, we note that the t-stat of ε are
order of magnitude smaller than those of η and frequently ε is not significantly different from zero.
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Figure 14: Expected Inflation and the Frequency of Price Changes.
Pooled Simple MLE of λ
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about half of the price changes are price increases and that the frequencies of price adjustment

are not very sensitive to inflation. As inflation rises the frequency of price increases converges

to the total frequency of price changes, implying that the frequency of price decreases must

drop to zero. The data depicted in Figure 15 is consistent with these theoretical findings.

The empirical behavior of the intensive margin is described in Figure 16 that shows the

absolute value of the magnitude of price increases and price decreases as a function of the

absolute value of inflation (in semilog scale). Figure 5 is the theoretical counterpart of the

empirical figure in this section that we computed in our numerical example. Menu cost

models imply that as the inflation rate increases, the average price changes become larger
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in absolute value. If for some reason (i.e. an unusually large idiosyncratic shock) the price

of a product is too high relative to the one maximizes static profits, the firm should not

incur the menu cost to reduce it since it will self correct rapidly due to inflation. As it self

corrects, in expected value, it will be closer to optimal static profit maximizing price. Or

more precisely, it should only incur the menu cost to decrease the price if it is extremely high.

Hence, the average price decrease should be higher for higher inflation rates. Figure 16 in

this section and Figure 5 in Section 2 are qualitatively very similar, except for the behavior

of price decreases at high inflation. For low inflation rates they are flat and the magnitude of

price increases and decreases is the same and approximately 10%. As inflation rises, in the

numerical example the magnitude of price increases and decreases rises and price increases

become larger than price decreases. In the data, the magnitude of price changes stays flatter

for a wider range of inflation rates than in the example and then it rises faster for the price

increases. The data for price decreases departs from the theory at high inflation rates as it

becomes a decreasing function of inflation above 400% per year.

7 Inflation and the Dispersion of Relative Prices

In Section 2 we analyze the effect of inflation on the variance of relative prices. Summarizing

our discussion there, inflation should have a very small effect on the dispersion of relative

prices at low level of inflation, and for higher levels the dispersion should become an increasing

function of inflation.

We remind the reader that the “extra” price dispersion created by nominal variation in

prices is one of the main avenues for inefficiency in models with sticky prices, see for example

chapter 6 of Woodford (2003) and Burstein and Hellwig (2008).

In this section we explore the association between simple measures of the average price

dispersion across goods and inflation. We measure the price dispersion across outlets selling

the same good or service at a given month. We then report a weighted average of this

dispersion of prices, where the weights are given by each product’s expenditure share in the

consumer survey. We use two measures of dispersion, the standard deviation of the log of

prices, and the difference between the 90th and 10th percentile of the log of prices. To be

concrete the average dispersion of relative prices at time t is given by

σ̄t =
N∑
j=1

ωj

∑
i∈Oj

(log pi,j,t)
2 −

 1

#Oj

∑
i∈Oj

log pi,j,t

2
1
2

,

where Oj are the set of outlets that sell the good j, ωj the expenditure share of the good
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Figure 15: Inflation and the Frequency of Price Increases and Decreases
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Note: The frequency of price increases and decreases is calculated as −log(1− f), where f is the
fraction of outlets increasing or decreasing price in a given date.
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Figure 16: Inflation and the Frequency of Price Increases and Decreases
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Note: The average price change is the log difference in prices, conditional on a price change taking
place, averaged with expenditure weights over all homogeneous and differentiated goods in a given
date.

j and pi,j,t is the price of the good j sold at outlet i at time t.12. The measure of average

dispersion based on the difference between the 90th and 10th percentile of log prices, denoted

by q̄t, is defined in analogously. We compute the time series for σ̄t, q̄t among differentiated

goods, and among homogenous goods. In Figure 17 we plot, in a log scale, these measures

of average dispersion of relative prices against the corresponding inflation for homogenous

goods and differentiated goods.

From Figure 17 it is clear that, the average dispersion of relative prices for a good increases

with the level of inflation, at least for high enough inflation. Notice that this pattern holds

regardless of the measure of dispersion that we use. Consistent with the explanation of

the difference between homogenous and differentiated goods (see Appendix F), we find that

the dispersion of relative prices is about twice as large for differentiated goods than for

homogeneous goods. We describe these patterns by fitting the following line using non-linear

12In the computation of σ̄ the set of outlets that sell a given good vary across time. Also, we exclude the
goods whose prices are missing
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Figure 17: Average Dispersion of Relative Prices and Inflation
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least squares

log σ̄t = a+ η log max {πc, |πt|}+ εt (28)

and likewise for q̄t. The results are reported in the top panel of Table 12. Notice that this

specification imposes that for low value of inflation, the relative price dispersion and inflation

are not correlated. The bottom panel of Table 12 includes regressions that estimates the

correlation for low inflation by fitting:

log σ̄t = a+ εmin {πt − πc, 0}+ ηmax {log πt − log πc, 0}+ εt . (29)

As can be seen from Figure 17 and from the values of π̄ reported in Table 12 the values

of inflation for which the positive correlation between pit and σ̄t are much larger than the

ones corresponding to the frequency of price changes λt and inflation πt (see Figure 10 and

Table 6). The values of πc are particularly large for homogeneous goods.

Table 12: Inflation and Relative Price Dispersion

Homogeneous Differentiated Aggregated
Std Dev 90-10 Pctile Std Dev 90-10 Pctile Std Dev 90-10 Pctile

log σ̄t = a+ η log max {πc, |πt|}+ εt and likewise for q̄t.
σ̄t q̄t σ̄t q̄t σ̄t q̄t

η 0.33 0.38 0.06 0.07 0.08 0.09
πc 241% 251% 17% 17% 29% 29%
R2 0.90 0.81 0.85 0.81 0.83 0.79

log σ̄t = a+ εmin {πt − πc, 0}+ ηmax {log πt − log πc, 0}+ εt and likewise for q̄t.
σ̄t q̄t σ̄t q̄t σ̄t q̄t

ε 0.01 -0.01 0.11 0.13 0.05 0.05
η 0.33 0.38 0.07 0.08 0.14 0.19
πc 256% 234% 60% 62% 250% 292%
R2 0.90 0.89 0.85 0.83 0.86 0.79

Note: πc is annual inflation, in log points.

The values of the elasticities η reported in Table 12 are close to 1/3 for homogeneous

goods, which is the theoretical limit for very large inflation, i.e. the value in Sheshinski and
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Weiss’s (1977) model. Instead the value of η for differentiated goods is positive but much

smaller. The simple statistical model in equation (28) we fit imposes that at low inflation

there is no correlation between inflation and dispersion of relative prices, and Figure 17 and

Figure 18 as well as the values of ε in Table 12 suggest that this is the case. In Figure 18 we

show a scatter plot of (q̄t, πt) for the aggregate data where we fit equation (29).

Figure 18: Average Dispersion of Relative Prices and Inflation
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We summarize the results of this section by saying that we find evidence consistent with

the predictions of menu cost models emphasized in Section 2. The dispersion of prices is

unresponsive to inflation for low inflation rates and it eventually increases. The range for

which the dispersion of relative prices is flat with respect to inflation is flat as suggested in the

numerical examples of Section 2. In the case of homogeneous goods elasticity of the standard

deviation of prices with respect to inflation seems to converge to the one predicted by the

Sheshinski and Weiss (1977) model, which is 1/3. We also conclude that the dispersion

of relative prices caused by inflation emphasized in chapter 6 of Woodford (2003) and in

Burstein and Hellwig (2008) as a welfare cost of inflation is likely to be relevant only for high

rates of inflation.
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8 Relation to the Literature

In this section we compare the results obtained in Section 4 to other estimations of the

frequency of price changes in the literature. Figure 19 provides a visual summary of how our

results compare to the existing literature and Table 13 provides a succinct comparison of the

data sets.

The figure illustrates the contribution of this paper to the literature and puts our results

in perspective. It plots the monthly frequency of price changes against inflation for a variety

of studies. First, observe how the wide range of inflation rates covered by our sample makes

this paper unique: none of the other papers covers inflation rates ranging from 0 to 7.2 million

per year (annualized rate of inflation in July 1989). Second, our results yield estimates of the

monthly frequency of price changes that are similar to those obtained in other countries for

similar inflation rates. This is remarkable since the other studies involve different economies,

different goods and different time periods. It is a strong indicator that our results are of

general interest, as the theory suggests, and are not a special feature of Argentina.

The studies included in the figure are all the ones we could find covering a wide inflation

range. For the low inflation range we included studies for the United States by Bils and

Klenow (2004), Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) and for

the Euro Area by Álvarez et al. (2006). Our estimates of the frequency of price changes are

consistent with all of them. Prices in the Euro area adjust somewhat less frequently but not

by much. There are other studies for low inflation countries, especially for the Euro area,

but as they mostly yield estimates similar to those of Álvarez et al. (2006) we do not report

them (see Álvarez et al. (2006) and Klenow and Malin (2011) for references to these studies).

We have three data points for Israel corresponding to an inflation rate of 16% per year in

1991-2 (Baharad and Eden (2004)) and to inflation rates of 64% per year in 1978-1979 and

120% per year in 1981-1982 (Lach and Tsiddon (1992)). The frequency of price adjustment

for these three points is perfectly aligned with the Argentine data. The same is true for the

Polish sample that ranges from 18% to 249% per year (Konieczny and Skrzypacz (2005))

and for the Mexican sample that ranges from 3.5% to 45% per year (Gagnon (2009)). The

Brazilian (Barros et al. (2009)) data yields higher frequencies of price changes than the other

studies, but the slope of the Brazilian cloud of points is consistent with ours.

As most of these studies estimate the frequency of price changes as the fraction of outlets

that change prices in any given month and then average this statistic, for comparison purposes

Figure 19 reports the implied probability of price adjustment 1− e−λ, where λ is the simple

pooled estimator. Gagnon (2009)) and Barros et al. (2009) report regressions of the frequency

of price changes on inflation that are misspecified as they imply that the frequency of price

56



Figure 19: Monthly Frequency of Price Changes and Inflation: Comparison to other Studies
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Poland from Konieczny and Skrzypacz (2005), and for Brazil Barros et al. (2009). Logarithmic
scale for the horizontal axis.

changes goes to infinity as inflation grows. Our specification (illustrated in Figure 20), that

regresses the log of the number of price changes per month, λ, on the log of inflation is

consistent with the theory presented in Section 2 that predicts a constant elasticity of λ with

respect to inflation.

Table 13 shows that in addition to covering a wide range of inflation rates our data set
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Figure 20: Price Changes per Month and Inflation: Comparison to other Studies
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is special due to its broad coverage that includes more than 500 goods representing 85% of

Argentina’s consumption expenditures.
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Table 13: Comparison with other Studies in Countries with High Inflation

Sample Observ. Inflation Monthly
Country Authors product coverage per month Sample (%. a.r.) freq. (%)

506 goods/servicies, 81, 305
Argentina This paper representing 84% on average 1988-1997 0− 7.2× 106 16-99

of Argentinian
consumption
expenditures

Brazil Barros et al. 70% of Brazilian 98,194 1997-2010 2-13 39-50
(2009) consumption on average

expenditures

Israel Llach and 26 food products
Tsiddon (1992) (mostly meat and 250 1978-1979 64 41

alcoholic beverages)

Israel Llach and 26 food products
Tsiddon (1992) (mostly meat and 530 1981-1982 118 61
Eden (2001), alcoholic beverages)

Israel Baharada and up to 390 narrowly- 2800 1991-1992 16 24
Eden (2004) defined products from

the Israeli CPI

227 product categories,
representing

Mexico Gagnon (2007) 54.1 percent of 31, 500 1994-2002 3.5-45 27-45
Mexican consumption
expenditures

Konieczny and 52 goods, including 37
Poland Skrzypacz grocery items, and 3 up to 2400 1990-1996 18-249 59-30

(2005) services
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A Computation of estimates and standard errors of λ

Here we describe the details on the maximum likelihood estimator and the computation of

the standard errors.

We compute the maximum likelihood estimator by using an iterative procedure. In this

discussion we fix a good or item. We denote the iterations by superindex j. The initial guess

for λ0
t is the log of the ratio of the outlets that change the price between t− 1 and t.Then we

solve for λj+1
t in equation (25) for the foc of λt taking as given the values of λjt−i and λjt+ i

for all i 6= 0. Notice that this equation has a unique solution. Also notice that the solution

can be ∞, for instance if all prices change, or zero.

We have not derived expression for standard error for the different estimator of λ. Nev-

ertheless to give an idea of the precision of our estimator, we note that for the simple pooled

estimator, assuming that missing values are independent, we can use the expression for the

standard error of a binomial distributed variable for the probability of a price change π, while

using the estimate π̂t = number of outlets with a price change /Nt where Nt is the number

of outlet with a price quote between t and t1. In this case se(π̂) =
√
π̂(1− π̂)/N . Using the

delta method and λ(p) = − log(1− p) then we have:

se(λ̂) =

√
exp(λ̂)− 1
√
N

and se(log λ̂) =
1

λ̂

√
exp(λ̂)− 1
√
N

. (30)

To give an idea of the magnitudes for our estimated parameters we use some round num-

bers for both homogeneous and differentiated goods. For the case where we pool all the

differentiated goods we can take Nd = 230 × 80 × 0.80 = 14720 ≈ # diff. goods ×avg. #

outlets diff. goods × fraction of non-missing quotes. Pooling all the homogenous goods we

Nh = 60000 = 300 × 250 × 0.80 ≈ # homog. goods ×avg. # outlets homog. goods ×
fraction of non-missing quotes. So for high value of λ such as for logλ̂ = log 5, we have that

the standard errors are se(log λ̂d) = 0.02 and se(log λ̂h) = 0.010. Instead for low values of

λ such as for logλ̂ = log 1/5, we have that the standard errors are se(log λ̂d) = 0.019 and

se(log λ̂h) = 0.009. Instead if we estimate λ at the level of each good, the standard errors

should be larger by a factor
√

230 ≈ 15 and
√

330 ≈ 17 for differentiated and homogenous

goods respectively.
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B Frequency of Price Changes in Danziger (1999)

We want to show that equation (7) holds, or in the notation of Danziger (1999) that

lim
c↓0

∂Ω(m)

∂m
= 0 . (31)

The rest of this section used the notation and refers to the equation and results in Danziger

(1999). As stated in footnote 16 ∂
∂ρ

Ω = − ∂
∂m

Ω. Using the expressions in the proof of Theorem

3 we have:
∂Ω

∂ρ
=

Ω2

φ

c

A

δ(BI − 4A)

(1− c)(1− δB)2

1

1 + δB/(1− cδB)
(32)

Taking c to zero in the LHS of equation (32) and using that limA = limB = 0 and lim I = 2

as c ↓ 0 we have

lim
∂Ω

∂ρ
=

Ω2(0)

φ
lim

c

A

δ(BI − 4A)

(1− c)(1− δB)2
lim

1

1 + δB/(1− cδB)

= δ
Ω2(0)

φ

(
lim

cB

A
2− 4

)
.

Using the definition of B and and expansion of the log we have that

B

A(c)
= 2 + 2c(

I

2
− 1) + o(A)

Thus lim ∂Ω
∂ρ

= 0.

C Analytical characterization of the model in Section 2.2

Proposition 3. Assume that σ > 0, c > 0 and that equation (11) holds. The inaction

set is given by I = {(p, z) : x + z < p < x̄ + z}. The optimal return point is given by

ψ(z) = x̂ + z. The value function in the range of inaction and the constants X ≡ (x, x̂, x̄)

with x < x̂ < x̄ solve

V (p, z) = ez(1−η)V (p− z, 0) ≡ ez(1−η)v(p− z) (33)

v(x) = a1 e
x(1−η) + a2 e

−xη +
2∑
i=1

Ai e
νix (34)
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where the coefficients ai, νi are given by

0 = −b0 + b1νi + b2(νi)
2

a1 =
1

b0 − (1− η) b1 − (1− η)2 b2

and a2 = − 1

b0 + η b1 − (η)2 b2

where

b0 = r + ρ− µz(1− η)− (1− η)2σ
2

2
, b1 = −

[
µz + π + 2(1− η)

σ2

2

]
, b2 =

σ2

2
.

and where the five values A1, A2, X solve the following five equations:

ĉ −a1

(
ex̂(1−η) − ex̄(1−η)

)
− a2

(
e−x̂η − e−x̄η

)
=

2∑
i=1

Ai
(
eνix̂ − eνix̄

)
,

ĉ −a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
=

2∑
i=1

Ai
(
eνix̂ − eνix

)
,

0 = a1 (1− η)ex̂(1−η) − a2 ηe
−x̂η +

2∑
i=1

Ai νie
νix̂ ,

0 = a1 (1− η)ex̄(1−η) − a2 ηe
−x̄η +

2∑
i=1

Ai νie
νix̄ ,

0 = a1 (1− η)ex(1−η) − a2 ηe
−xη +

2∑
i=1

Ai νie
νix .

The first two equations are linear in (A1, A2), given X.

The expected number of adjustments per unit of time is given in the next proposition:

Proposition 4. Given a policy described by X = (x, x̂, x̄) the expected number of

adjustment per unit of time λa and the expected number of price increases λ+
a are given by

λa = 1
/[1

ρ
+

2∑
i=1

Bi e
qix̂

]

λ+
a = 1

/[1

ρ
+

2∑
i=1

Bl,i e
qix̂

]

where qi are the roots of ρ = −(π + µz)qi + σ2

2
(qi)

2 and where Bi and Bl,i, BH,i solve the
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following system of linear equations:

0 =
1

ρ
+

2∑
i=1

Bi e
qix =

1

ρ
+

2∑
i=1

Bi e
qix̄,

1

ρ
= −Bh,1 e

q1x̂ −Bh,2 e
q2x̂ , 0 = Bh,1

(
eq1x̂ − eq1x̄

)
+Bh,2

(
eq2x̄ − eq2x̂

)
,

−1

ρ
= Bl,1 e

q1x +Bl,2 e
q2x , 0 = Bl,1 q1 e

q1x̂ +Bl,2 q2 e
q2x̂ −Bh,1 q1 e

q1x̂ −Bh,2 q2 e
q2x̂ .

Now we turn to the density of the invariant distribution

Proposition 5. Given a policy described by X = (x, x̂, x̄) the density of the invariant

distribution g(p, z) is given by

g(p, z) =



eφ1z
[
U+

1 e
ξ1(p−z) + U+

2

]
if p− z ∈ (x̂, x̄] , z > 0

eφ1z
[
L+

1 e
ξ1(p−z) + L+

2

]
if p− z ∈ [x, x̂] , z > 0

eφ2z
[
U−1 e

ξ2(p−z) + L−2
]

if p− z ∈ (x̂, x̄] , z < 0

eφ2z
[
L−1 e

ξ2(p−z) + L−2
]

if p− z ∈ [x, x̂] , z < 0

0 otherwise

(35)

where {φ1, φ2, ξ1, ξ2} are given by

ρ = −µzφj +
σ2

2
φ2
j for each of the roots j = 1, 2 and

ξj = −π + µz − 2φj
σ2

2

σ2/2

and where the coefficients {U+
i , L

+
i , U

−
i , L

−
i }i=1,2 solve 8 linear equations:

0 = U+
1 eξ1x̄ + U+

2 = L+
1 eξ1x + L+

2

0 = U−1 eξ2x̄ + U−2 = L−1 eξ2x + L−2
φ1φ2

φ1 − φ2

=
L+

1

ξ1

[
eξ1x̂ − eξ1x

]
+ L+

2 [x̂− x] +
U+

1

ξ1

[
eξ1x̄ − eξ1x̂

]
+ U+

2 [x̄− x̂]

φ1φ2

φ1 − φ2

=
L−1
ξ2

[
eξ2x̂ − eξ2x

]
+ L−2 [x̂− x] +

U−1
ξ2

[
eξ2x̄ − eξ2x̂

]
+ U−2 [x̄− x̂]

U+
1 eξ1x̂ + U+

2 = L+
1 eξ1x̂ + L+

2

U−1 eξ2x̂ + U−2 = L−1 eξ2x̂ + L−2 .
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Denoting the marginal density for prices h we have:

h(p) ≡
∫ ∞
−∞

g(p, z)dz =

∫ p−x

p−x̄
g(p, z)dz =

∫ p−x̂

p−x̄
g(p, z)dz +

∫ p−x

p−x̂
g(p, z)dz (36)

h(p) =



∫ p−x̂
p−x̄ e

φ1z
[
U+

1 e
ξ1(p−z) + U+

2

]
dz +

∫ p−x
p−x̂ e

φ1z
[
L+

1 e
ξ1(p−z) + L+

2

]
dz if p > x̄

∫ 0

p−x̄ e
φ2z
[
U−1 e

ξ2(p−z) + U−2
]
dz +

∫ p−x̂
0

eφ1z
[
U+

1 e
ξ1(p−z) + U+

2

]
dz

+
∫ p−x
p−x̂ e

φ1z
[
L+

1 e
ξ1(p−z) + L+

2

]
dz if p ∈ [x̂, x̄)

∫ p−x̂
p−x̄ e

φ2z
[
U−1 e

ξ2(p−z) + U−2
]
dz +

∫ 0

p−x̂ e
φ2z
[
L−1 e

ξ2(p−z) + L−2
]
dz

+
∫ p−x

0
eφ1z

[
L+

1 e
ξ1(p−z) + L+

2

]
dz if p ∈ [x, x̂)

∫ p−x̂
p−x̄ e

φ2z
[
U−1 e

ξ2(p−z) + U−2
]
dz +

∫ p−x
p−x̂ e

φ2z
[
L−1 e

ξ2(p−z) + L−2
]
dz if p < x

(37)

Using that ∫ b

a

eφz
[
D1e

ξ(p−z) +D2

]
dz = D1e

ξp

∫ b

a

e(φ−ξ)zdz +D2

∫ b

a

eφzdz

= D1
eξp+(φ−ξ)b − eξp+(φ−ξ)a

φ− ξ +D2
eφb − eφa

φ

we can solve the integrals for each of the branches of h where Di ∈ {U+
i , U

−
i , L

+
i , L

−
i } for

i = 1, 2and (φ, ξ) ∈ {φ1, ξ1, φ2, ξ2} and a and b take different values accordingly.

For completeness we give the expression for the case with σ = 0, a version of Sheshinski

and Weiss (1977) model.

Proposition 6. Assume that σ = 0, c > 0, π + µz > 0 and equation (11) holds. The

inaction set is given by I = {(p, z) : x + z < p < x̄ + z}. The optimal return point is given

by ψ(z) = x̂ + z. The value function in the range of inaction and the constants X ≡ (x, x̂)

solve

V (p, z) = ez(1−η)V (p− z, 0) ≡ ez(1−η)v(p− z)

v(x) = a1 e
x(1−η) + a2 e

−xη + A eνx
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where the coefficients ai, ν are given by

ν =
b0

b1

, a1 =
1

b0 − (1− η) b1

and a2 = − 1

b0 + η b1

where

b0 = r + ρ− µz(1− η), b1 = − [µz + π] .

and where the three values A,X ≡ (x, x̂) solve the following three equations:

ĉ −a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
= A

(
eνx̂ − eνx

)
,

0 = a1 (1− η)ex̂(1−η) − a2 ηe
−x̂η + A νeνx̂ ,

0 = a1 (1− η)ex(1−η) − a2 ηe
−xη + A νeνx .

Furthermore:

λa =
ρ

1− exp
(
− ρ
π+µz

(x̂− x)
)

Proof. (of Proposition 3) To simplify the notation we evaluate all the expressions when

p̄ = 0, so the relative price and the nominal price coincide.

The Bellman equation in the inaction region (p, z) ∈ I is

(r + ρ)V (p, z) = e−ηp (ep − ez)− πVp(p, z) + Vz(p, z)µz + Vzz(p, z)
σ2

2

for all p ∈ [p(z), p̄(z)]. The boundary conditions are given by first order conditions for the

optimal return point:

Vp(ψ(z), z) = 0 (38)

the value matching conditions, stating that the value at each of the two boundaries is the

same as the value at the optimal price after paying the cost:

V (p(z), z) = V (ψ(z), z)− ζ(z), V (p̄(z), z) = V (ψ(z), z)− ζ(z). (39)

and the smooth pasting conditions, stating that the value function should have the same

slope at the boundary than the value function in the control region (which is flat), so:

Vp(p(z), z) = 0, Vp(p̄(z), z) = 0, (40)

Under this conditions, the value function and optimal policies are homogeneous in the
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sense that:

V (p, z) = ez(1−η)V (p− z, 0) ≡ ez(1−η)v(p− z) (41)

p(z) = z + z, p̄(z) = x̄+ z , and ψ(z) = x̂+ z , (42)

where x, x̄ and x̂ are three constant to be determined.

Using the homogeneity of the value function in equation (41) we can compute the deriva-

tives

Vp(p, z) = ez(1−η)v′(p− z)

Vz(p, z) = (1− η)ez(1−η)v(p− z)− ez(1−η)v′(p− z)

Vzz(p, z) = (1− η)2ez(1−η)v(p− z)− 2(1− η)ez(1−η)v′(p− z) + ez(1−η)v′′(p− z)

Replacing this derivatives in the Bellman equation for the inaction region we get

(r + ρ)v(p− z) = e−(p−z)η (ep−z − 1
)
− πv′(p− z) + [(1− η)v(p− z)− v′(p− z)]µz

+ [(1− η)2v(p− z)− 2(1− η)v′(p− z) + v′′(p− z)]
σ2

2

or [
r + ρ− µz(1− η)− (1− η)2σ

2

2

]
v(p− z) = e(p−z)(1−η) − e−η(p−z)

− v′(p− z)[µz + π + 2(1− η)
σ2

2
] + v′′(p− z)

σ2

2

We write x = p− z be the log of the markup. Consider the free boundary ODE:

b0 v(x) = ex(1−η) − e−ηx + b1 v
′(x) + b2 v

′′(x) for all x ∈ [x, x̄]

v (x) = v (x̂)− ĉ, v (x̄) = v(x̂)− ĉ,
v′ (x) = 0, v′ (x̄) = 0, v′ (x̂) = 0 ,
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where

b0 =

[
r + ρ− µz(1− η)− (1− η)2σ

2

2

]
,

b1 = −
[
µz + π + 2(1− η)

σ2

2

]
,

b2 =
σ2

2
.

The value function is given by the sum of the particular solution and the solution of the

homogeneous equation:

v(x) = a1 e
x(1−η) + a2 e

−xη +
2∑
i=1

Ai e
νix

where νi are the roots of the quadratic equation

0 = −b0 + b1νi + b2(νi)
2

and where the coefficients for the particular solution are

a1 =
1

b0 − (1− η) b1 − (1− η)2 b2

a2 = − 1

b0 + η b1 − (η)2 b2

,

since

b0 a1 e
x(1−η) = ex(1−η) + a1 (1− η)ex(1−η) b1 + a1 (1− η)2ex(1−η) b2

b0 a2 e
−xη = −e−xη − a2 ηe

−xη b1 + a2 (η)2e−xη b2 .

The five constants A1, A2 and X ≡ (x, x̄, x̂) are chosen to satisfies the 2 value matching

conditions equation (39), the two smooth pasting conditions equation (40) and the optimal

return point equation (38). It is actually more convenient to solve the value function in

two steps. First to solve for the constants Ai(X) for i = 1, 2 using the two value matching

conditions. Mathematically, the advantage of this intermediate step is that, given X, the

equations for the A1, A2 are linear. Conceptually, the advantage is that the solution represent

the value of the policy described by the triplet X = (x̄, x, x̂). Then we solve for (x̄, x, x̂)

using the conditions for the optimality of the thresholds, namely the two smooth pasting

equation (40) and the f.o.c. for the return point equation (38).
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Solving A1, A2 for a given policy X amount to solve the following linear system:

ĉ− a1

(
ex̂(1−η) − ex̄(1−η)

)
− a2

(
e−x̂η − e−x̄η

)
=

2∑
i=1

Ai
(
eνix̂ − eνix̄

)
ĉ− a1

(
ex̂(1−η) − ex(1−η)

)
− a2

(
e−x̂η − e−xη

)
=

2∑
i=1

Ai
(
eνix̂ − eνix

)
Given A1(X), A2(X) we need to solve the following three equations:

0 = a1 (1− η)ex̂(1−η) − a2 ηe
−x̂η +

2∑
i=1

Ai(X) νie
νix̂ ,

0 = a1 (1− η)ex̄(1−η) − a2 ηe
−x̄η +

2∑
i=1

Ai(X) νie
νix̄ ,

0 = a1 (1− η)ex(1−η) − a2 ηe
−xη +

2∑
i=1

Ai(X) νie
νix .

Proof. of Proposition 4 The expected time until the next adjustment solves the following

Kolmogorov equation:

ρT (p, z) = 1− πTp(p, z) + Tz(p, z)µz + Tzz(p, z)
σ2

2

for all p such that p(z) < p < p̄(z), and all z. The boundary conditions are that time reaches

zero when it hits the barriers:

T (p̄(z), z) = T (p(z), z) = 0 .

Given the homogeneity of the policies we look for a function satisfying

T (p, z) = T (p− z)

Given the form of the expected time we have:

Tp(p, z) = T ′(p− z), Tz(p, z) = −T ′(p− z) and Tzz(p, z) = T ′′(p− z) ,

so the Kolmogorov equation becomes:

ρT (x) = 1− (π + µz)T
′(x) + T ′′(x)

σ2

2
for all x ∈ (x, x̄) .
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The solution of this equation, given x, x̄ is:

T (x) =
1

ρ
+

2∑
i=1

Bi e
qix for all x ∈ (x, x̄)

where qi are roots of

ρ = −(π + µz)qi +
σ2

2
(qi)

2 , (43)

and where the B1, B2 are chosen so that the expected time is zero at the boundaries:

0 =
1

ρ
+

2∑
i=1

Bi e
qix (44)

0 =
1

ρ
+

2∑
i=1

Bi e
qix̄ (45)

Given the solution of this two linear equations B1(x, x̄), B2(x, x̄) the expected number of

adjustments per unit of time λa is given by

λa =
1

T (x̂)
=

1
1
ρ

+
∑2

i=1 Bi(x, x̄) eqix̂
,

Finally, we derive the expression for the frequency of price increases. The time until the next

price increase is the first time until x hits x or the product dies while x < x < x̂. If x hits

x̄, or the product dies exogenously while x̄ > x > x̂, then x then is returned to x̂. Thus the

expected time until the next increase in price solves the following Kolmogorov equation:

ρT (p, z) =

1− πTp(p, z) + Tz(p, z)µz + Tzz(p, z)σ
2

2
if p < z + x̂

1 + ρT (z + x̂, z)− πTp(p, z) + Tz(p, z)µz + Tzz(p, z)σ
2

2
if p > z + x̂

for all p such that p(z) < p < p̄(z), and all z. The boundary conditions are that time reaches

zero when it hits the barriers:

T (x̄+ z, z) = T (x̂+ z, z) and T (x+ z, z) = 0 .

We look for a solution that is continuous and once differentiable at (p, z) = (x̂ + z, z), and

otherwise twice continuously differentiable. To do so we let T (p, z) = Th(x) for x ∈ [x̂, x̄]
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and T (p, z) = Tl(x) for x ∈ [x, x̂] and

ρTl(x) = 1− (π + µz)T
′
l (x) + T ′′l (x)

σ2

2

ρTh(x) = 1 + ρTh(x̂)− (µz + π)T ′h(x) + T ′′h (x)
σ2

2
Tl(x̂) = Th(x̂) , T ′l (x̂) = T ′h(x̂)

Th(x̂) = Th(x̄) , Tl(x) = 0 .

The solution for Tj for j = h, l are:

Tl(x) =
1

ρ
+

2∑
i=1

Bl,i e
qix and Th(x) =

1

ρ
+

2∑
i=1

Bh,i e
qix +

(
1

ρ
+

2∑
i=1

Bl,i e
qix̂

)

The four boundary conditions become the following four linear equations of the constants

B′s:

2∑
i=1

Bl,i e
qix̂ =

2∑
i=1

Bh,i e
qix̂ +

2∑
i=1

Bl,i e
qix̂ +

1

ρ

2∑
i=1

Bl,i qi e
qix̂ =

2∑
i=1

Bh,i qi e
qix̂

2∑
i=1

Bl,i e
qix = 0

2∑
i=1

Bh,i e
qix̂ =

2∑
i=1

Bh,i e
qix̄

Hence, the frequency of price increases λ+
a is given by

λ+
a = 1/Tl(x̂) = 1

/(
1/ρ+

2∑
i=1

Bl,ie
qix̂

)
.

Proof. of Proposition 5 The density of the invariant distribution for (p, z) solves the forward

Kolmogorov p.d.e.:

ρg(p, z) = πgp(p, z)− µzgz(p, z) + gzz(p, z)
σ2

2
(46)

for all (p, z) 6= (x̂+z, z) = (ψ(z), z) and all p : p(z) = x+z ≤ p ≤ x̄+z = p̄(z) and all z. The

pde does not apply at the optimal return point, since local consideration cannot determine
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g there. The other boundary conditions are zero density at the lower and upper boundaries

of adjustments, and that g integrates to one:

g(x+ z, z) = g(x̄+ z, z) = 0 for all z

1 =

∫ ∞
∞

∫ x̄+z

x+z

g(p, z) dp dz

We will show that g can be computed dividing the state space in four regions given by whether

(p, z) is such that z > 0 and z < 0 and given z whether p ∈ [x+z, x̂+z] and p ∈ [x̂+z, x̄+z].

As a preliminary step we solve for the marginal on z of the invariant distribution, which

we denote by g̃. This is the invariant distribution of the process {z} which with intensity ρ

is re-started at zero and otherwise follows dz = µzdt+ σdW . It can be shown that g̃ is given

by

g̃(z) ≡
∫ x̄+z

x+z

g(p, z) dp =


φ1φ2
φ1−φ2 e

φ2z if z < 0

φ1φ2
φ1−φ2 e

φ1z if z > 0,
(47)

where φ1 < 0 < φ2 are the two real roots of the characteristic equation

ρ = −µzφ+
σ2

2
φ2. (48)

We conjecture that g can be written as follows:

g(p, z) =

eφ1zk(p− z) if z < 0

eφ2zk(p− z) if z > 0,
(49)

In this case we compute the derivatives as:

gp(p, z) = eφzk′(p− z) ,

gz(p, z) = eφzφ k(p− z)− eφzk′(p− z) ,

gzz(p, z) = eφzφ2 k(p− z)− 2eφzφ k′(p− z) + eφzk′′(p− z) .

where φ = φ1 for z < 0 and φ = φ2 for z > 0. The p.d.e. then becomes:

ρk(p−z) = πk′(p−z)−µz [φ k(p− z)− k′(p− z)]+
[
φ2 k(p− z)− 2φ k′(p− z) + k′′(p− z)

] σ2

2

for p− z 6= x̂ or[
ρ+ φµz − φ2σ

2

2

]
k(p− z) =

(
π + µz − 2φ

σ2

2

)
k′(p− z) + k′′(p− z)

σ2

2
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Thus

k(p− z) =

U1e
ξ1j(p−z) + U2e

ξ2j(p−z) if p− z ∈ (x̂, x̄]

L1e
ξ1j(p−z) + L2e

ξ2j(p−z) if p− z ∈ [x, x̂]

where ξ1j, ξ2j solves the quadratic equation:[
ρ+ φjµz − φ2

j

σ2

2

]
=

(
π + µz − 2φj

σ2

2

)
ξ +

σ2

2
ξ2 (50)

for each j = 1, 2 corresponding to φ = φ1 and φ = φ2, i.e. the positive and negative values

of z. We note that, by definition of φ in equation (48), the left hand side of equation (50)

equal zero, and hence one of the two roots is always equal to zero. Thus we label ξ2j = 0 for

j = 1, 2. The remaining root equals:

ξ1j = −π + µz − 2φj
σ2

2

σ2/2
and ξ2j = 0 for j = 1, 2 . (51)

We integrate g(p, z) over p and equate it to g̃(z) to obtain a condition for coefficients C.

First we consider the case of z > 0:

g̃(z) =

∫ x̂+z

x+z

eφ1z
2∑
i=1

L+
i eξi1(p−z) dp+

∫ x̄+z

x̂+z

eφ1z
2∑
i=1

U+
i eξi1(p−z) dp

= eφ1z
2∑
i=1

L+
i e−ξi1z

ξi1

[
eξi1(x̄+z) − eξi1(x̂+z)

]
+ eφ1z

2∑
i=1

U+
i e−ξi1z

ξi1

[
eξi1(x̂+z) − eξi1(x+z)

]
= eφ1z

(
2∑
i=1

L+
i

ξi1

[
eξi1x̄ − eξi1x̂

]
+

2∑
i=1

U+
i

ξi1

[
eξi1x̂ − eξi1x

])

= eφ1z
(
L+

1

ξ11

[
eξ11x̂ − eξ11x

]
+ L+

2 [x̂− x] +
U+

1

ξ11

[
eξ11x̄ − eξ11x̂

]
+ U+

2 [x̄− x̂]

)
where the last line uses that ξ2,1 = 0. The analogous expression for z < 0 is

g̃(z) = eφ2z
(
L−1
ξ12

[
eξ12x̂ − eξ12x

]
+ L−2 [x̂− x] +

U−1
ξ12

[
eξ12x̄ − eξ12x̂

]
+ U−2 [x̄− x̂]

)
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The value of the density at the boundary of the range of inaction is given by

g(x̄+ z, z) =

eφ1z
∑2

i=1 U
+
i eξi1x̄ for z > 0

eφ2z
∑2

i=1 U
+
i eξi2x̄ for z < 0

g(x+ z, z) =

eφ1z
∑2

i=1 L
+
i eξi1x for z > 0

eφ2z
∑2

i=1 L
+
i eξi2x for z < 0

If the density g at (p, z) = (ψ(z), z) = (z + x̂, z) is continuous on p for a given z we have:

g(x̂, z) =

eφ1z
[∑2

i=1 U
+
i eξi1x̂

]
= eφ1z

[∑2
i=1 L

+
i eξi1x̂

]
if z > 0 ,

eφ2z
[∑2

i=1 U
−
i eξi2x̂

]
= eφ2z

[∑2
i=1 L

−
i eξi2x̂

]
if z < 0 .

(52)

We summarize the results for the invariant density g here

g(p, z) =



eφ1z
[
U+

1 e
ξ1(p−z) + U+

2

]
if p− z ∈ (x̂, x̄] , z > 0

eφ1z
[
L+

1 e
ξ1(p−z) + L+

2

]
if p− z ∈ [x, x̂] , z > 0

eφ2z
[
U−1 e

ξ2(p−z) + L−2
]

if p− z ∈ (x̂, x̄] , z < 0

eφ2z
[
L−1 e

ξ2(p−z) + L−2
]

if p− z ∈ [x, x̂] , z < 0

(53)

where {φ1, φ2} are the two roots of the quadratic equation (48) and where the use ξ1 ≡
ξ11, ξ2 ≡ ξ12} are given by the non-zero roots equation (51). The 8 values for {U+

i , L
+
i , U

−
i , L

−
i }i=1,2

solve two system of 4 linear equations, one for {U+
i , L

+
i }i=1,2 and one for {U−i , L−i }i=1,2. The

upper and lower boundary of the range of inaction has zero density for both positive and

negative values of z:

0 = U+
1 eξ1x̄ + U+

2 = L+
1 eξ1x + L+

2 (54)

0 = U−1 eξ2x̄ + U−2 = L−1 eξ2x + L−2 (55)

The marginal distribution of the z computed using g coincides with g̃ for positive and negative

values of z:

φ1φ2

φ1 − φ2

=
L+

1

ξ1

[
eξ1x̂ − eξ1x

]
+ L+

2 [x̂− x] +
U+

1

ξ1

[
eξ1x̄ − eξ1x̂

]
+ U+

2 [x̄− x̂] (56)

φ1φ2

φ1 − φ2

=
L−1
ξ2

[
eξ2x̂ − eξ2x

]
+ L−2 [x̂− x] +

U−1
ξ2

[
eξ2x̄ − eξ2x̂

]
+ U−2 [x̄− x̂] (57)
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The density is continuous at (p, z) = (ψ(z), z) = (z + x̂, z). Thus

U+
1 eξ1x̂ + U+

2 = L+
1 eξ1x̂ + L+

2 (58)

U−1 eξ2x̂ + U−2 = L−1 eξ2x̂ + L−2 (59)

Proof. (of Proposition 6) The expressions for the value function are obtained by setting

σ = 0 and imposing the sS policy between the bands x, x̂. This problem is identical to the

one in Sheshinski and Weiss (1977), where the discount rate is r + ρ. For the frequency of

price adjustment we need to include the death and replacement of the products. For this we

let T the expected time until an adjustment:

ρT (p, z) = 1 + Tz(p, z)µz − Tp(p, z)π
ρT (x) = 1− T ′(x)(µz + π) .

with boundary conditions T (x) = 0. So the solution is T (x) = 1/ρ + B exp
(
− ρ
π+µz

x
)

with

B = − exp
(

ρ
π+µz

x
)
/ρ so

T (x) =
1

ρ

[
1− exp

(
− ρ

π + µz
(x− x)

)]
and hence

1/λa = T (x̂) =
1

ρ

[
1− exp

(
− ρ

π + µz
(x̂− x)

)]

D Homogenous vs Differentiated goods estimation

Figure 10 and Table 6 show that the estimation results for the Homogenous and Differentiated

goods differ. This poses the question as whether the actual goods have some idiosyncratic

component or the sampling periodicity (bi-monthly vs. monthly) is affecting the estimates.

To answer it we try three different exercises.

D.1 Homogenous aggregated monthly

As mentioned before, homogenous goods are sampled bi-monthly. The spirit of this section

methodology is trying to mimic the results that one would have obtained if the sampling

would have been monthly instead.
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If this new estimation is similar to the original, then it points in the direction that

sampling periodicity is not a major factor accounting for the difference in the estimates

between Homogenous and Differentiated goods. I will be assumed, that for a given item no

price changed occurred in a given month, if it didn’t change in both the first and second

fortnights. Finally, to keep things simple, we will use the Pooled simple estimator for the

frequency of price adjustment.

Figure 21: Comparing two different time aggregations of homogenous goods

0.1% 1% 10% 100% 1000% 10,000%

0.25

0.5

0.75

1

2

3

4

5
0

π c
2v as 1v = 12, η2v as 1v = 0.63

πc
2v = 12, η2v = 0.62

Frequency of price changes and inflation rate
Pooled MLE (Simple) of λ

1200 × | logP (t)− logP (t − 1)| abs. value c.c. annual % inflation

fr
eq

u
en

cy
of

p
ri

ce
ch

an
ge

s
p

er
m

on
th

λ

 

 

4 months

1 months

1 week

Two visits as one visit
Two visits

Figure D.1 above shows that the elasticity and inflation threshold are very similar in both

cases. Nevertheless, this new estimate is almost always below the original as clearly seen in

Figure D.1. We will argue that this could be the case by construction of both estimates,

when having a decreasing hazard rate.
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Figure 22: Comparing two different time aggregations of homogenous goods: time series
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Define

Pt = P (st) : the probability of a price change at time t given past history st

P 1
t+1 = P (st−1, st = 1, st+1 = 1) : probability of a price change at time t+ 1 given that a price change have ocurred at t

P 0
t+1 = P (st−1, st = 0, st+1 = 1) : probability of a price change at time t+ 1 given that no price change have ocurred at t

Then, we have that the probability of no price adjustment in any consecutive periods can

be written as
t t+ 1

1− Pt Pt(1− P 1
t+1) + (1− Pt)(1− P 0

t+1)

Normalizing the total number of observations in the sample to 1, the period by period
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bi-monthly lambda estimation (in the simple case) would be

λt = − log(1− Pt)
λt+1 = − log

[
Pt(1− P 1

t+1) + (1− Pt)(1− P 0
t+1)
]

And the monthly estimation (the one labeled Average of Homogoneous bi-weekly) would

be

λ2v
t,t+1 = λt + λt+1 = − log

[
(1− Pt)

(
Pt(1− P 1

t+1) + (1− Pt)(1− P 0
t+1)
)]

On the other hand, if we treat the bi-monthly sample as if it were sampled monthly (Ho-

mogenous aggregated monthly) then1 footnote(without taking into accounts the consecutive

price changes that go back to the original price)

λ2v as 1v
t,t+1 = − log((1− Pt)(1− P 0

t+1))

where the expression inside the log(·), is just the probability of no price change in two

consecutive periods. Comparing both this estimates, it is straightforward to see that

If P 1
t+1 > P 0

t+1 =⇒ λ2v as 1v
t,t+1 < λ2v

t,t+1

In words, if we have a decreasing hazard rate then by construction one of the estimates

will always be lower.

D.2 Common goods

There are 29 goods that are both in the homogenous and differentiated goods samples. These

are basically sampled monthly in small shops and bi-monthly in supermarkets. Restricting

attention only to these goods, we will estimate separately for each sub-sample using the

Pooled simple estimator. Again, if the results are similar, it would be indicative of the

relative unimportance of the sampling periodicity.

NEED TO INSERT FIGURE OF COMMON GOODS

As can be seen, the elasticities and inflation thresholds are somewhat different, but about

the same order of magnitude. It is worth mentioning, that the number of observations in

these subsamples is rather small, resulting in high standard error for the estimations above,

and very noisy estimates.
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D.3 Inflation dispersion

Calculating the Standard Deviation of the absolute value of price changes during low inflation

years would give us an idea of the idiosyncratic component present in the homogenous and

differentiated goods. In this way, the mean standard deviation between 1993 and 1997 is

2.44 for the Homogenous and 2.3 for the Differentiated goods, evidencing a possible greater

exposure to idiosyncratic shocks. Given that homogenous goods are most of all composed by

food and beverages, see description in Appendix F, we find this to be in line with previous

finding in the literature.

E Sales, Substitutions and Missing Values

In this section we give more information on time series for the frequency of substitution, sales

and missing values, plotting separately each series for homogeneous and differentiated goods

in Figure 23.

F Good/Service Classification in the CPI Database

As mentioned in the introduction, our database includes a total of 545 goods/services classi-

fied according to the MERCOSUR Harmonized Index of Consumer Price (HICP) classifica-

tion. The HICP uses the first four digit levels of the Classification of Individual Consumption

According to Purpose (COICOP) of the United Nations plus three digit levels based on the

CPI of the MERCOSUR countries. The 545 goods/services in the database are the seven

digit level of the HICP classification; six digit level groups are called products; five digit level

groups are called sub-classes; four digit level categories are called classes; three digit level

categories are called groups and two digit level groups are called divisions. Table 14 shows

two examples of this classification.

Table 14: Example of the Harmonized Index of Consumer Price Classification

Classification Example 1 Example 2
Division Food and Beverages Household equipment and maintenance
Group Food Household maintenance
Class Fruits Cleaning tools and products
Sub-Class Fresh Fruits Cleaning products
Product Citric Fruits Soaps and detergents
Good Lemons Liquid soap
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Figure 23: Frequencies of Substitution, Sales and Missing Values
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Note: Missing includes stock-outs.
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The precision or detail in the specification of the good depends on the degree of homo-

geneity of its physical characteristics. A specification is “closed” when all items belonging to

that good are equivalent in its physical characteristics. A specification is “open” when the

items included in that good have some different physical characteristics. The more closed the

specification the more homogenous are the physical characteristics of the good. Goods with

closed specifications are called homogeneous and goods with open specifications are called

non-homogeneous. The main advantage of the homogenous goods is that allow to compute

average prices with small standard deviation. Non homogeneous goods have more disperse

prices. In the table above, lemons constitutes a homogeneous good and liquid soap is an ex-

ample of a non-homogeneous good. In both cases the identification of the good includes also

variable characteristics called attributes of the good. These attributes have names and values

attached to them. Values can be numeric, string and/or logical expressions. For example,

in the case of liquid soap, attributes names could be packaging and weight and their values

pump bottle and 500ml, respectively. For most cases, the brand chosen for the product is

the one most widely sold by the outlet, or the one that occupy more space in the stands, if

applicable (hence brands can change from month to month or from two-weeks to two-weeks).

For same cases, the brand is part of the attributes, the product is defined as one from a “top

brand”.

The 545 goods are divided into two groups: homogenous (74.6% of price quotes) and non-

homogeneous goods or differentiated goods (25.4% of price quotes). Examples of homogenous

goods are: barley bread, chicken, lettuce, etc. Examples of non-homogenous goods are

moccasin shoes, utilities, tourism, and professional services. As explained in the introduction,

we excluded from our database fuel, goods in baskets and rents prices. After these exclusions

the database contains 506 goods/services.

Prices are gathered every two weeks for all homogenous goods and for those non-homogeneous

goods gathered in super-market chains (we group these goods in a category that we called

two visit goods); and gathered every month for the rest of the non-homogeneous goods (we

group these goods in a category that we called one visit goods). In the sample there are 233

goods in the two visit category, 302 in the one visit category and 29 goods belonging to both

categories. As mentioned above, there are a total of 506 different goods in our sample.

Goods are weighted to construct the CPI by using the information of the National Expen-

diture Survey (ENGH) of 1986. Weights are computed as the proportion of the households

expenditure on each good over the total expenditure of the households. In this way, the

weight of a particular good is proportional to the importance of its expenditure with respect

to the total expenditure without taking into account the percentage of households buying it.

Our database covers about 84% of household expenditures.
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Table 15 shows the top 20 goods, in terms of the importance of their weights in our

sample. As it can be seen from the table, most goods whose prices are gathered twice a

month are represented by food and beverages while goods whose prices are gathered monthly

include services, apparel and other miscellaneous goods and services.

Table 15 about here

Table 16 shows the weight structure in our database classified by divisions. The table

shows goods in terms of their weight with respect to the total weight in the sample (Total

column), and with respect to the total weight of their belonging category (one or two visit

goods) Food and non-alcoholic beverages represent almost 43% of the total weight in the

sample and 82% of the total weight of goods whose prices are gathered twice a month.

On the other hand, weights of one visit goods are less concentrated. Almost 12% of the

total weight in the sample corresponds to furniture and household items and around 9%

correspond to apparel. These percentages are around 24% and 19%, respectively, when

computing percentages over the total weight in the one visit goods category.

Table 16 about here

F.1 Instructions to CPI’s Pollsters

Pollsters record item’s prices. Remember that an item is a good/service of a determined

brand sold in a specific outlet in a specific period of time. Prices are transactional, meaning

that the pollster should be able to buy the product in the outlet. As described above, goods

are defined by its attributes. For the majority of the goods, the brand is not an attribute.

The brand of a specific item is determined the first time the pollster visits an outlet. The

brand is the most sold/displayed by the outlet. Once the item is completely defined, the

pollster collects the price of that item next time she visits the same outlet. After the first

visit, in the following visits, the pollsters arrive to each outlet with a form that includes all

items for which prices are to be collected.

For example, assume the good is soda-cola top brand and the attributes are package:

plastic bottle and weight: 1.5 liters. The first time the pollster goes to, say, outlet A she ask

for the cola top brand most sold in that outlet. Assume that Coca-Cola is the most sold soda

in outlet A. Then the item is completely defined: Coca-Cola in plastic bottle of 1.5 liters in

outlet A. Next time the pollster goes to outlet A she records the price of that item.

All prices are in argentine pesos. Our dataset does not contain flags for indexed prices.

In traditional outlets pollsters ask for the price of an item even when, for example it is
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displayed in a blackboard, because the good has to be available in order to record its price.

In supermarket chains the price recorded is collected from the shelf/counter display area.

There are a number of special situations to be taken into account:

1. Substitutions: every time there is a change in the attributes of the good the pollster

has to replace that particular good for another one. In this case, the pollster mark the

price collected with a flag indicating a substitution has occurred. The goods that are

substituted should be similar in terms of the type of brand and or quality.

2. Stockouts: every time the pollster could not buy the item, either because the good is

out of stock in the outlet or because the same good or a similar one is not sold by

outlet at the time the price has to be collected, she has to mark the item with a flag

of stockout and she has to assign a missing price for that item. Stock-outs include

what we label “pure stock-outs”, the case where the outlet has depleted the stock of

the good, including end of seasonal goods/services. Stock outs also include the case

where the outlet no longer carries the same good/service and it does not offers a similar

good/service of comparable quality/brand. Examples of stock-outs include many fruits

and vegetables not available off-season, as well as clothing such as winter coats and

sweaters during summer.

3. Sales: every time the pollster observes a good with a sale flag in an outlet, she has to

mark the price of that particular item with a sale flag.
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G Background on Inflation and Economic Policy

Here we give a brief chronology of economic policy to help readers understand the economic

environment in our sample period, which goes from December 1988 to September 1997. The

beginning of our sample coincides with decades of high inflation culminating in two years

of extremely high inflation (typically referred as two short hyperinflations) followed by a

successful stabilization plan, based on a currency board, started in April of 1991 which

brought price stability in about a year, and stable prices until at least three more years after

the end of our sample.

The years before the introduction of the currency board witnessed several unsuccessful

stabilization plans, whose duration become shorter and shorter, and that culminated in the

two short hyperinflations, all of these during a period of political turmoil. Several sources

describe the inflation experience of Argentina since the 1970, such as Kiguel (1991) and

Alvarez and Zeldes (2005) for the period before 1991 and Cavallo and Cottani (1997) for

descriptions right after 1991. For a more comprehensive study see Buera and Nicolini (2010).

Figure 24: Inflation, Money Growth and Deficits
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Argentina had a very high average inflation rate since the beginning of the 1970s. In-
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stitutionally, the Central Bank has been part of the executive branch with no independent

powers, and typically has been one of the most important sources of finance for a chronic

fiscal deficit. Figure 24 plots inflation, money growth and deficits between 1960 and 2010

with our sample period highlighted in yellow. The deficit as a percentage of GDP was on

average well above 5% from 1975 to 1990, see Figure 24. At the beginning of the 1980s fiscal

deficit and its financing by the Central Bank were large even for Argentinean standards.

These years coincide with a bout of high inflation that started in the second half of the last

military government, 1980 to 1982, and continued during the first two years of the newly

elected administration of Dr. Alfonsin, 1983 to 1984.

In June of 1985 there was a serious attempt to control inflation by a new economic team

which implemented what it is referred to as the Austral stabilization plan (the name comes

from the introduction of the “Austral” currency in place of the “Argentine Peso”). The

core of this stabilization plan was to fixed the exchange rate, to control the fiscal deficit

and its financing from the Central Bank, and to introduce price and wage controls. While

the Austral plan had some initial success, reducing the monthly inflation rate from 30% in

June of 1985 to 3.1% in August of 1985, by mid 1986 the exchange rate was allowed to

depreciate every month and inflation reached about 5% per month. By July of 1987 the

monthly inflation rate was already above 10%. The same economic team started what is

referred to as the “Primavera” stabilization plan in October 1988, when the inflation rate

was again around 30% per month, at a time when the Alfonsin administration was becoming

politically weak. The primavera plan was a new short lived exchange rate based stabilization

plan that was abandoned in February of 1989 13. Our data set starts right after the beginning

of the Primavera stabilization plan, in December of 1988.

After the collapse of the “Plan Primavera” the economy lost its nominal anchor and a

perverse monetary regime was in place. Legal reserve requirements for banks where prac-

tically 100% and the Central Bank paid interest on reserves (most of the monetary base)

printing money. Thus a self fulfilling mechanism for inflation was in place. High inflation-

ary expectations, led to high nominal deposit rates, which turned into high rates of money

creation that validated the inflationary expectations.

Figure 25 displays the yearly percent continuously compounded inflation rate and interest

rate for the first years of our sample, together with references to some of the main changes in

economic policy during the period. Observe how interest rates and inflation skyrocketed after

the plan Primavera’s crawling peg was abandoned. In May 1989 a presidential election took

place where the opposition candidate, Dr. Menem, was elected. The finance minister and the

13The peg started at about 12 units of argentine currency (“the Austral”) per us dollar. To put it in
perspective, at the beginning of the Austral plan, the peg was 0.8 units of argentine currency per US dollar.
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central bank president that carried the Primavera plan resigned in April 1989. Thereafter, Dr.

Alfonsin’s administration had two different finance ministers and two different central bank

presidents, in the midst of a very weak political position and rampant uncertainty about the

policies to be followed by the next administration. During the campaign for the presidential

election Dr. Menem proposed economic policies that can be safely characterized as populist,

with a strong backing from labor unions. Indeed, the core of his proposed economic policy

was to decree a very large generalized wage increase, “el salariazo”.14 In July 1989 the elected

president, Dr Menem, took office, several months before the stipulated transition date, in

the midst of uncontrolled looting, riots and extreme social tension. The inflation rate at this

time was the highest ever recorded in Argentina, almost 200% per month—2.3% per day.

The beginning of the Menem administration started with a large devaluation of the argen-

tine currency, in what is known as the BB stabilization plan, for the name of the company

Bunge and Born, where the two first secretaries of the treasury came from. Indeed these

appointments made by the Menem administration were a surprise to most observers, given

the promises made in the campaign. The announcement of tight control of the fiscal deficit,

and the management of the exchange rate of this plan were also surprising for most observers.

During this time inflation transitorily fell.

In December 1989, amid large looses in the value of the argentine peso, a new finance

minister was appointed, Dr. Erman Gonzalez, who started yet a new “stabilization plan”

(referred to as Plan Bonex). The core of this plan was a big compulsory open market

operation by which the central bank exchanged all time deposits in the Banking system

(mostly peso denominated time deposits with maturities of less than a month) for 10 year

US Dollar denominated government bonds (Bonex 1989). This big open market operation

changed the monetary regime and allowed the Central Bank to regain control of the money

supply, as the government no longer had to pay interest on money (reserves on time deposits)

by printing money. During Dr. Gonzalez tenure there were several fiscal measures aimed at

controlling the fiscal deficit. In march 1990 a renewed version of the stabilization plan was

launched, with a stricter control of the money supply and of the fiscal deficit. The actual

percentage inflation rates during 1989 and 1990 were 4924% and 1342% respectively!

In January of 1991, Dr. Gonzalez resigned and Dr. Cavallo was appointed as finance

minister. During the first two months of his tenure there was a large devaluation of the

currency and a large increase in the prices of government owned public utility firms. In April

1st of 1991 there was a regime shift that lasted until 2001. The new regime was a currency

board that fixed the exchange rate and enacted the independence of the Central Bank, first

14The slogan to summarize his proposed economic policy was “el salariazo”, i.e. “the huge wage increase”
in Spanish.
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Figure 25: Inflation and Depreciation Rate during HyperInflations
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by means of presidential decrees, and then by laws approved by congress. At this time the

argentinean currency, the Austral, was pegged to the US dollar at 10,000 units per USD.15

On January 1st 1992 there was a currency reform that introduced a new currency (the

Peso Argentino) to replace the Austral, chopping four zeros of the latter (so that one peso

was pegged to one dollar, and to 10,000 australes).

There are a host of changes that were introduced at this time, both in term of deregulation

and in terms of fiscal arrangements (broadening of the value added tax’s base, sale of state

owned firms, etc.), which in the first years reduced the size of the fiscal deficit. There was

also a renewed access to the international bond markets, and a constant increase in public

15To have an idea of the average inflation rate until 1991, notice that the exchange rate when the Austral
was introduced in June of 1985 was 0.8 austral per US dollars.
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debt. There were also an acceleration of the trade liberalization that started in the mid

80s and a liberalization of all price and wage controls. During the years covered in our

sample, GDP grew substantially, despite the short and sharp recession during 1995, typically

associated with the balance of payment crisis in Mexico. The exchanged rate remained fixed

until January of 2002, where the exchange rate was depreciated in the midst of a banking

run that started in the last quarter of 2001, a recession that started at least a year prior, and

the simultaneous default of the public debt.
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