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Abstract

This document presents how to estimate and implement a structural VAR-X model under long run and impact
identification restrictions. Estimation by bayesian and maximum likelihood methods is presented. Applications
of the structural VAR-X for impulse response functions to structural shocks, multiplier analysis of the exogenous
variables, forecast error variance decomposition and historical decomposition of the endogenous variables are
also described, as well as a method for computing HPD regions in a bayesian context. Some of the concepts
are exemplified with an application to US data.
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The use of VAR-X and structural VAR-X models in econometrics is not new, yet textbooks and
articles that use them often fail to provide the reader a concise (and moreover useful) description of
how to implement these models (Lütkepohl (2005) constitutes an exception of this statement). The use
of bayesian techniques in the estimation of VAR-X models is also largely neglected from the literature,
as is the construction of the historical decomposition of the endogenous variables. This document
builds upon the S-VAR and B-VAR literature and its purpose is to present a review of some of the
basic features that accompany the implementation of a structural VAR-X model.

Section 1 presents the notation and general setup to be followed throughout the document. Section
2 discuses the identification of structural shocks in a VAR-X, with both long run restrictions, as in
Blanchard and Quah (1989), and impact restrictions, as in Sims (1980, 1986). Section 3 considers the
estimation of the parameters by maximum likelihood and bayesian methods. In Section 4 it is shown
how to use the marginal density of the model for choosing the lag structure. Finally, in Section 5, four
of the possible applications of the model are presented, namely the construction of impulse response
functions to structural shocks, multiplier analysis of the exogenous variables, forecast error variance
decomposition and historical decomposition of the endogenous variables. Appendix A exemplifies
some of the concepts developed in the document using Galí (1999)’s structural VAR augmented with
oil prices as an exogenous variable.

1 General setup

In all sections the case of a structural VAR-X whose reduced form is a VAR-X(p, q) will be considered.
It is assumed that the system has n endogenous variables (yt) and m exogenous variables (xt). The

∗The results and opinions expressed in this document do not compromise in any way Banco de la República or
its board of directors. We wish to thank Eliana González, Luis Fernando Melo and Christian Bustamente for useful
comments on earlier drafts of this document, of course, all remaining errors are our own.
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2 Identification of structural shocks in a VAR-X 2

variables in yt and xt may be in levels or in first differences, this depends on the characteristics of the
data, the purpose of the study, and the identification strategy, in all cases no co-integration is assumed.
The reduced form of the structural model includes the first p lags of the endogenous variables, the
contemporaneous values and first q lags of the exogenous variables and a constant vector.1 Under this
specification it is assumed that the model is stable and presents white-noise Gaussian residuals (et),
i.e. et

iid∼ N (0,Σ).
The reduced form VAR-X can be represented as in equation (1) or equation (2), where v is a

n-vector, Bi are (n× n) matrices and Θi are (n×m) matrices. In equation (2) one has B (L) =
B1L+ . . .+BpL

p and Θ (L) = Θ0 + . . .+ ΘqL
q, both matrices of polynomials in the lag operator L.

yt = v +B1yt−1 + . . .+Bpyt−p + Θ0xt + . . .+ Θqxt−q + et (1)
yt = v +B (L) yt + Θ (L)xt + et (2)

Defining Ψ (L) = Ψ0 + Ψ1L+ . . . = [I −B (L)]
−1 with Ψ0 = I as an infinite polynomial on the lag

operator L, one has the VMA-X representation of the model, equation (3).2

yt = Ψ (1) v + Ψ (L) Θ (L)xt + Ψ (L) et (3)

Finally, there is a structural VAR-X model associated with the equations above, most of the
applications are obtained from it, for example those covered in Section 5. Instead of the residuals
(e), which can be correlated among them, the structural model contains structural disturbances with
economic interpretation (ε), this is what makes it useful for policy analysis. It will be convenient to
represent the model by its VMA-X form, equation (4),

yt = µ+ C (L) εt + Λ (L)xt (4)

where the endogenous variables are expressed as a function of a constant n-vector (µ), and the current
and past values of the structural shocks (ε) and the exogenous variables. It is assumed that ε is a
vector of white noise Gaussian disturbances with identity covariance matrix, i.e. εt

iid∼ N (0, I). Both
C (L) and Λ (L) are infinite polynomials in the lag operator L, each matrix of C (L) (C0, C1, . . .) is of
size (n× n), and each matrix of Λ (L) (Λ0,Λ1, . . .) is of size (n×m).

2 Identification of structural shocks in a VAR-X

The identification of structural shocks is understood here as a procedure which enables the econometri-
cian to obtain the parameters of a structural VAR-X from the estimated parameters of the reduced form
of the model. As will be clear from the exposition below, the identification in presence of exogenous
variables is no different from what is usually done in the S-VAR literature.

Equating (3) and (4) one has:

µ+ Λ (L)xt + C (L) εt = Ψ (1) v + Ψ (L) Θ (L)xt + Ψ (L) et

then the following equalities can be inferred:
1 The lag structure of the exogenous variables may be relaxed allowing different lags for each variable. This complicates

the estimation and is not done here for simplicity. Also, the constant vector or intercept may be omitted according to
the characteristics of the series used.

2 The models stability condition implies that Ψ (1) =

[
I −

p∑
i=1

Bi

]−1

exist and is finite.
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µ = Ψ (1) v (5)
Λ (L) = Ψ (L) Θ (L) (6)

C (L) εt = Ψ (L) et (7)

Since the parameters in v, B (L) and Θ (L) can be estimated from the reduced form VAR-X
representation, the values of µ and Λ (L) are also known.3 Only the parameters in C (L) are left to be
identified, the identification depends on the type of restrictions to be imposed. From equations (5), (6)
and (7) is clear that the inclusion of exogenous variables in the model has no effect in the identification
of the structural shocks. Equation (7) also holds for a structural VAR model.

The identification restrictions to be imposed over C (L) may take several forms. Since there is
nothing different in the identification between the case presented here and the S-VAR literature,
we cover only two types of identification procedures, namely: impact and long run restrictions that
allow the use of the Cholesky decomposition. It is also possible that the economic theory points at
restrictions that make impossible a representation in which the Cholesky decomposition can be used, or
that the number of restrictions exceeds whats needed for exact identification. Both cases complicate
the estimation of the model, and the second one (over-identification) makes possible to carry out
test over the restrictions imposed. For a more comprehensive treatment of this problems we refer to
Amisano and Giannini (1997).

There is another identification strategy that won’t be covered in this document, identification by
sign restrictions over some of the impulse response functions. This kind of identification allows to
avoid some puzzles that commonly arise in the VAR literature. References to this can be found in
Uhlig (2005), Mountford and Uhlig (2009), Canova and De Nicolo (2002), Canova and Pappa (2007)
and preceding working papers of those articles originally presented in the late 1990’s. More recently,
the work of Moon et al. (2011) presents how to conduct inference over impulse response functions with
sign restrictions, both by classical and bayesian methods.

2.1 Identification by impact restrictions
In Sims (1980, 1986) the identification by impact restrictions is proposed, the idea behind it is that
equation (7) is equating two polynomial in the lag operator L, for them to be equal it must be the
case that:

CiL
iεt = ΨiL

iet

Ciεt = Ψiet (8)

Equation (8) holds for all i, in particular it holds for i = 0. Knowing that Ψ0 = I, the following
result is obtained:

C0εt = et (9)

then, by taking the variance on both sides one gets:

C0C
′

0 = Σ (10)

Since Σ is a symmetric, positive definite matrix it is not possible to infer in an unique form the
parameters of C0 from equation (10), restrictions over the parameters of C0 have to be imposed.
Because C0 measures the impact effect of the structural shocks over the endogenous variables, those

3 Lütkepohl (2005) presents methods for obtaining the matrices in Ψ (L) and the product Ψ (L) Θ (L) recursively in
Sections 2.1.2 and 10.6, respectively. Ψ (1) is easily computed by taking the inverse on I −B1 − . . .−Bp.
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restrictions are called here impact restrictions. Following Sims (1980), the restrictions to be imposed
ensure that C0 is a triangular matrix, this allows to use the Cholesky decomposition of Σ to obtain
the non-zero elements of C0. This amount of restrictions account n × (n − 1)/2 and make the model
just identifiable.

Once C0 is known, equations (8) and (9) can be used to calculate Ci for all i as:

Ci = ΨiC0 (11)

The steps for the identification by impact restrictions are summarized in Algorithm 1.

Algorithm 1 Identification by impact restrictions

1. Estimate the reduced form of the VAR-X.

2. Calculate the VMA-X representation of the model (matrices Ψi) and the covariance matrix of
the reduced form disturbances e (matrix Σ).

3. From the Cholesky decomposition of Σ calculate matrix C0 (equation 10).

C0 = chol (Σ)

4. For i = 1, . . . , R, with R given, use equation 11 to calculate the matrices Ci.

Ci = ΨiC0

Step 4 completes the identification in the sense that all matrices of the structural VMA-X are known.

2.2 Identification by long run restrictions
Another way to identify the matrices of the structural VMA-X is to impose restrictions on the long
run impact of the shocks over the endogenous variables. This method is proposed in Blanchard and
Quah (1989). For the model under consideration, if the variables in yt are in differences, the matrix

C (1) =
∞∑
i=0

Ci measures the long run impact of the structural shocks over the levels of the variables.4

Matrix C (1) is obtained by evaluating equation (7) in L = 1. As in the case of impact restrictions,
the variance of each side of the equation is taken, the result is:

C (1)C
′
(1) = Ψ (1) ΣΨ

′
(1) (12)

Again, since Ψ (1) ΣΨ
′
(1) is a symmetric, positive definite matrix it is not possible to infer the

parameters of C (1) from equation (12), restrictions over the parameters of C (1) have to be imposed.
It is conveniently assumed that those restrictions make C (1) a triangular matrix, as before, this allows
to use the Cholesky decomposition to calculate the non-zero elements of C (1). Again, this amount of
restrictions account n× (n− 1)/2 and make the model just identifiable.

Finally, it is possible to use C (1) to calculate the parameters in the C0 matrix, with it, the
matrices Ci for i > 0 are obtained as in the identification by impact restrictions. Combining (10) with
(7) evaluated in L = 1 the following expression for C0 is derived:

4 Of course, not all the variables of yt must be in differences, but the only meaningful restrictions are those imposed
over variables that enter the model in that way. We restrict our attention to a case in which there are no variables in
levels in yt.
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C0 = [Ψ (1)]
−1
C (1) (13)

The steps for the identification by long run restrictions are summarized in Algorithm 2.

Algorithm 2 Identification by long run restrictions

1. Estimate the reduced form of the VAR-X.

2. Calculate the VMA-X representation of the model (matrices Ψi) and the covariance matrix of
the reduced form disturbances e (matrix Σ).

3. From the Cholesky decomposition of Ψ (1) ΣΨ
′
(1) calculate matrix C (1) (equation 12).

C (1) = chol
(

Ψ (1) ΣΨ
′
(1)
)

4. With the matrices of long run effects of the reduced form, Ψ (1), and structural shocks, C (1),
calculate the matrix of contemporaneous effects of the structural shocks, C0 (equation 13).

C0 = [Ψ (1)]
−1
C (1)

5. For i = 1, . . . , R, with R sufficiently large, use equation (11) to calculate the matrices Ci.

Ci = ΨiC0

Step 5 completes the identification in the sense that all matrices of the structural VMA-X are known.

3 Estimation

The estimation of the parameters of the VAR-X can be carried out by maximum likelihood or bayesian
methods, as will become clear it is convenient to write the model in a more compact form. Following
Zellner (1996) and Bauwens et al. (2000), equation (1), for a sample of T observations, plus a fixed
presample, can be written as:

Y = ZΓ + E (14)

where Y =



y
′

1
...
y
′

t
...
y
′

T


, Z =



1 y
′

0 . . . y
′

−(p−1) x
′

1 . . . x
′

1−q
...
1 y

′

t−1 . . . y
′

t−p x
′

t . . . x
′

t−q
...
1 y

′

T−1 . . . y
′

T−p x
′

T . . . x
′

T−q


, E =



e
′

1
...
e
′

t
...
e
′

T


and Γ =



v′

B
′

1
...
B
′

p

Θ’
o
...

Θ
′

q



.

For convenience we define the auxiliary variable k = (1 + np+m (q + 1)) as the total number of
regressors. The matrices sizes are as follow: Y is a (T × n) matrix, Z a (T × k) matrix, E a (T × n)
matrix and Γ a (k × n) matrix.

Equation (14) is useful because it allows to represent the VAR-X model as a multivariate linear
regression model, with it the likelihood function is derived. The parameters can be obtained by
maximizing that function or by means of Bayes theorem.
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3.1 The likelihood function
From equation (14) one derives the likelihood function for the error terms. Since et ∼ N (0,Σ),
one has: E ∼ MN (0,Σ⊗ I), a matricvariate normal distribution with I the identity matrix with
dimension (T × T ). The following box defines the probability density function for the matricvariate
normal distribution.
The matricvariate normal distribution
The probability density function of a (p× q) matrix X that follows a matricvariate normal distribution
with mean Mp×q and covariance matrix Qq×q ⊗ Pp×p (X ∼ MN (M,Q⊗ P )) is:

MNpdf (M,Q⊗ P ) ∝ |Q⊗ P |
−1
2 exp

(
−1

2
[vec (X −M)]

′
(Q⊗ P )

−1
[vec (X −M)]

)
(15)

Following Bauwens et al. (2000), the vec operator can be replaced by a trace operator (tr):

MNpdf (M,Q⊗ P ) ∝ |Q|
−p
2 |P |

−q
2 exp

(
−1

2
tr
(
Q−1 (X −M)

′
P−1 (X −M)

))
(16)

Both representations of the matricvariate normal pdf are useful when dealing with the compact rep-
resentation of the VAR-X model. Note that the equations above are only proportional to the actual
probability density function. The missing constant term has no effects in the estimation procedure.

Using the definition in the preceding box and applying it to E ∼ MN (0,Σ⊗ I) one gets the
likelihood function of the VAR-X model, conditioned to the path of the exogenous variables:

L ∝ |Σ|
−T
2 exp

(
−1

2
tr
(

Σ−1E
′
E
))

From (14) one has E = Y − ZΓ, replacing:

L ∝ |Σ|
−T
2 exp

(
−1

2
tr
(

Σ−1 (Y − ZΓ)
′
(Y − ZΓ)

))
Finally, after tedious algebraic manipulation, one gets to the following expression:

L ∝
[
|Σ|

−(T−k)
2 exp

(
−1

2
tr
(
Σ−1S

))] [
|Σ|

−k
2 exp

(
−1

2
tr
(

Σ−1
(

Γ− Γ̂
)′
Z
′
Z
(

Γ− Γ̂
)))]

where Γ̂ =
(
Z
′
Z
)−1

Z
′
Y and S =

(
Y − ZΓ̂

)′ (
Y − ZΓ̂

)
.

One last thing is noted, the second factor of the right hand side of the last expression is proportional
to the pdf of a matricvariate normal distribution for Γ, and the first factor to the pdf of an inverse
Wishart distribution for Σ (see the box below). This allows an exact characterization of the likelihood
function as in equation (17).

L = iWpdf (S, T − k − n− 1)MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
(17)

The parameters of the VAR-X, Γ and Σ, can be estimated by maximizing equation (17). It can be
shown that the result of the likelihood maximization gives:

Γml = Γ̂ Σml = S
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The inverse Wishart distribution
If the variable X (a square, positive definite matrix of size q) is distributed iW (S, v), with parameter
S (also a square, positive definite matrix of size q), and v degrees of freedom, then its probability
density function

(
iWpdf

)
is given by:

iWpdf (S, v) =
|S|

v
2

2
vq
2 Γq

(
v
2

) |X|−(v+q+1)
2 exp

(
−1

2
tr
(
X−1S

))
(18)

where Γq (x) = π
q(q−1)

4

q∏
j=1

Γ
(
x+ 1−j

2

)
is the multivariate Gamma function. It is useful to have an

expression for the mean and mode of the inverse Wishart distribution, these are given by:

Mean (X) =
S

v − q − 1
Mode (X) =

S

v + q + 1

3.2 Bayesian estimation
If the estimation is carried out by bayesian methods the problem is to elect an adequate prior dis-
tribution and, by means of Bayes theorem, obtain the posterior density function of the parameters.
The use of bayesian methods is encouraged because they allow inference to be done conditional to
the sample, and in particular the sample size, giving a better sense of the uncertainty associated with
the parameters values; it also facilitate to compute moments not only for the parameters but for their
functions as is the case of the impulse responses, forecast error variance decomposition and others; it
is also particularly useful to obtain a measure of skewness in this functions, specially for the policy
implications of the results. As mentioned in Koop (1992), the use of bayesian methods gives an exact
finite sample density for both the parameters and their functions.

The election of the prior is a sensitive issue and wont be discussed in this document, we shall
restrict our attention to the case of the Jeffreys non-informative prior (Jeffreys, 1961) which is widely
used in bayesian studies of vector auto-regressors. There are usually two reasons for its use. The
first one is that information about the reduced form parameters of the VAR-X model is scarce and
difficult to translate into an adequate prior distribution. The second is that it might be the case that
the econometrician doesn’t want to include new information to the estimation but only wishes to use
bayesian methods for inference purposes. Besides the two reasons already mentioned, the use of the
Jeffreys non-informative prior constitute a computational advantage because it allows a closed form
representation of the posterior density function, thus allowing to make draws for the parameters by
direct methods or by the Gibbs sampling algorithm (Geman and Geman, 1984).5

For a discussion of other usual prior distributions for VAR models we refer to Kadiyala and Karls-
son (1997) and, more recently, to KociĘcki (2010) for the construction of feasible prior distributions
over impulse response in a structural VAR context. When the model is used for forecast purposes
the so called Minnesota prior is of particular interest, this prior is due to Litterman (1986), and is
generalized in Kadiyala and Karlsson (1997) for allowing symmetry of the prior across equations. This
generalization is recommended and is of easy implementation in the bayesian estimation of the model.
It should me mentioned that the Minnesota prior is of little interest in the structural VAR-X context,
principally because the model is conditioned to the path of the exogenous variables, adding difficulties
to the forecasting process.

In general the Jeffreys Prior for the linear regression parameters correspond to a constant for the
parameters in Γ and for the covariance matrix a function of the form: |Σ|

−(n+1)
2 , where n represents

the size of the covariance matrix. The prior distribution to be used is then:
5 For an introduction to the use of the Gibbs sampling algorithm we refer to Casella and George (1992).
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P (Γ,Σ) = C |Σ|
−(n+1)

2 (19)

where C is the integrating constant of the distribution. Its actual value will be of no interest.
The posterior is obtained from Bayes theorem as:

π (Γ,Σ|Y,Z) =
L (Y,Z|Γ,Σ)P (Γ,Σ)

m (Y )
(20)

where π (Γ,Σ|Y, Z) is the posterior distribution of the parameters given the data, L (Y,Z|Γ,Σ) is the
likelihood function, P (Γ,Σ) is the prior distribution of the parameters and m (Y ) the marginal density
of the model. The value and use of the marginal density is discussed in Section 4 and will be omitted
in the current Section.

Combining equations (17), (19) and (20) one gets an exact representation of the posterior function
as the product of the pdf of an inverse Wishart distribution and the pdf of a matricvariate normal
distribution:

π (Γ,Σ|Y,Z) = iWpdf (S, T − k)MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
(21)

Equation (21) implies that Σ follows an inverse Wishart distribution with parameters S and T −k,
and that the distribution of Γ given Σ is matricvariate normal with mean Γ̂ and covariance matrix

Σ⊗
(
Z
′
Z
)−1

. The following two equations formalize the former statement:

Σ|Y,Z ∼ iWpdf (S, T − k) Γ|Σ, Y, Z ∼ MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
Although further work can be done to obtain the unconditional distribution of Γ it is not necessary

to do so. Because equation (21) is an exact representation of the parameters distribution function, it
can be used to generate draws of them, moreover it can be used to compute any moment or statistic
of interest, this can be done by means of the Gibbs sampling algorithm.

4 Marginal densities and lag structure

The marginal density (m (Y )) can be easily obtained under the Jeffreys prior and can be used afterward
for purposes of model comparison. The marginal density gives the probability that the data is generated
by a particular model, eliminating the uncertainty due to the parameters values. Because of this m (Y )
is often used for model comparison by means of the Bayes factor: the ratio between the marginal
densities of two different models that explain the same set of data (BF12 = m(Y |M1)/m(Y |M2)). If the
Bayes factor is bigger than one then the first model (M1) would be preferred.

From Bayes theorem (equation 20) the marginal density of the data, given the model, is:

m (Y ) =
L (Y, Z|Γ,Σ)P (Γ,Σ)

π (Γ,Σ|Y, Z)
(22)

its value is obtained by replacing for the actual forms of the likelihood, prior and posterior functions
(equations 17, 19 and 21 respectively):

m (Y ) =
Γn
(
T−k

2

)
Γn
(
T−k−n−1

2

) |S|−n−1
2 2

n(n+1)
2 C (23)
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Algorithm 3 Bayesian estimation

1. Select the specification for the reduced form VAR-X, that is to chose values of p (endogenous
variables lags) and q (exogenous variables lags) such that the residuals of the VAR-X (e) have
withe noise properties. With this the following variables are obtained: T, p, q, k, where:

k = 1 + np+m (q + 1)

2. Calculate the values of Γ̂, S with the data (Y,Z) as:

Γ̂ =
(
Z
′
Z
)−1

Z
′
Y S =

(
Y − ZΓ̂

)′ (
Y − ZΓ̂

)
3. Generate a draw for the covariance matrix of the reduced form VAR-X (Σ) from an inverse

Wishart distribution with parameter S and T − k degrees of freedom.

Σ ∼ iWpdf (S, T − k)

4. Generate a draw for the parameters of the reduced form VAR-X (Γ) from a matricvariate normal

distribution with mean Γ̂ and covariance matrix Σ⊗
(
Z
′
Z
)−1

.

Γ|Σ ∼ MNpdf

(
Γ̂,Σ⊗

(
Z
′
Z
)−1

)
5. Repeat steps 2-3 as many times as desired, save the values of each draw.

The draws generated (step 4) can be used to compute moments of the parameters.
For every draw the corresponding structural parameters, impulse responses functions, etc. can be
computed, then, their moments and statistics can also be computed.
The algorithms for generating draws for the inverse Wishart and matricvariate normal distributions
are presented in Bauwens et al. (2000), Appendix B.

Although the exact value of the marginal density for a given model cannot be known without the
constant C, this is no crucial for model comparison if the only difference between the models is in their
lag structure. In that case the constant C is the same for both models, and the difference between the
marginal density of one specification or another arises only in the first two factors of the right hand

side of equation (23)
[

Γn(T−k
2 )

Γn(T−k−n−1
2 )

|S|
−n−1

2

]
. When computing the Bayes factor for any pair of models

the result will be given by those factors alone.
The Bayes factor between a model, M1, with k1 regressors and residual covariance matrix S1, and

another model, M2, with k2 regressors and residual covariance matrix S2, can be reduced to:

BF12 =
m (Y |M1)

m (Y |M2)
=

Γn
(
T−k1

2

)
Γn
(
T−k1−n−1

2

) |S1|
−n−1

2 2
n(n+1)

2 C

BF12 =

Γn(T−k1
2 )

Γn(T−k1−n−1
2 )

|S1|
−n−1

2

Γn(T−k2
2 )

Γn(T−k2−n−1
2 )

|S2|
−n−1

2

(24)
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5 Applications

There are several applications for the structural VAR-X, all of them useful for policy analysis. In this
Section four of those applications are covered, they all use the structural VMA-X representation of the
model (equation 4).

5.1 Impulse response functions (IRF), Multiplier analysis (MA), and Forecast
error variance decomposition (FEVD)

Impulse response functions (IRF) and multiplier analysis (MA) can be constructed from the matrices in
C (L) and Λ (L). The IRF shows the endogenous variables response to a unitary change in a structural
shock, in an analogous way the MA shows the response to a change in an exogenous variable. The
construction is simple and is based on the interpretations of the elements of the matrices in C (L) and
Λ (L).

For the construction of the IRF consider matrix Ch. The elements of this matrix measure the
effect of the structural shocks over the endogenous variables h periods ahead, thus cijh (i-th row, j-th
column) measures the response of the i-th variable to a unitary change in the j-th shock h periods
ahead. The IRF for the i-th variable to a change in j-th shock is constructed by collecting elements
cijh for h = 0, 1, . . . ,H, with H the IRF horizon.

Matrices Ch are obtained from the reduced form parameters according to the type of identification
restrictions (see Section 2). For a more detailed discussion on the construction and properties of the
IRF we refer to Lütkepohl (2005), Section 2.3.2.

The MA is obtained in a similar fashion from the matrices Λh, these are also a function of the
reduced form parameters.6 The interpretation is the same as before.

A number of methods for inference over the IRF and MA are available. If the estimation is carried
out by classical methods intervals for the IRF and MA can be computed by means of their asymptotic
distributions or by bootstrapping methods.7 Nevertheless, because the OLS estimators are biased,
as proved in Nicholls and Pope (1988), the intervals that arise from both asymptotic theory and
usual bootstrapping methods are also biased. As pointed out by Kilian (1998) this makes necessary to
conduct the inference over IRF, and in this case over MA, correcting the bias and allowing for skewness
in the intervals. Skewness is common in the small sample distributions of the IRF and MA and arises
from the non-linearity of the function that maps the reduced form parameters to the IRF or MA. A
double bootstrapping method that effectively corrects the bias and accounts for the skewness in the
intervals is proposed in Kilian (1998).

In the context of bayesian estimation, it is noted that, applying Algorithm 1 or 2 for each draw of
the reduced form parameters (Algorithm 3), the distribution for each cijh and λijh is obtained. With the
distribution function inference can be done over the point estimate of the IRF and MA. For instance,
standard deviations in each horizon can be computed, as well as asymmetry measures and credible sets
(or intervals), the bayesian analogue to a classical confidence interval.

In the following we shall restrict our attention to credible sets with minimum size (length), these are
named Highest Posterior Density regions (HDP from now on). An (1− α) % HPD for the parameter
θ is defined as the set C = {θ ∈ Θ : π (θ/Y ) ≥ k(α)}, where k(α) is the largest constant satisfying
P (C|y) =

´
θ
π (θ/Y ) dθ ≥ 1 − α.8 From the definition just given is clear that HPD regions are of

minimum size and that each value of θεC has a higher density (probability) than any value of θ outside
the HPD. The second property makes possible direct probability statements about the likelihood of θ
falling in C, i.e., “The probability that θ lies in C given the observed data Y is at least (1−α)%”, this
contrast with the interpretation of the classical confidence intervals. An HPD region can be disjoint if

6 See Lütkepohl (2005), Section 10.6
7 The asymptotic distribution of the IRF and FEVD for a VAR is presented in Lütkepohl (1990). A widely used

non-parametric bootstrapping method is developed in Runkle (1987).
8 Integration can be replaced by summation if θ is discrete.
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Algorithm 4 Highest Posterior Density Regions
As in Chen and Shao (1998), let

{
θ(i), i = 1 , . . . , N

}
be an ergodic sample of π (θ/Y ), the posterior

density function of parameter θ. π (θ/Y ) is assumed to be unimodal. The (1− α) % HPD is computed
as follows:

1. Sort the values of θ(i). Define θ(j) as the j − th larger draw of the sample, so that:

θ(1) = min
iε{1,...,N}

{
θ(i)
}

θ(N) = max
iε{1,...,N}

{
θ(i)
}

2. Define N = b(1− α)Nc the integer part of (1− α)N . The HPD will contain N values of θ.

3. Define C(j) =
(
θ(j) , θ(j+N)

)
an interval in the domain of the parameter θ, for jε

{
1, . . . , N −N

}
.

Note that although C(j) contains always N draws of θ, its size may vary.

4. The HPD is obtained as the interval C(j) with minimum size. HPD (α) = C(j?), with j? such
that:

θ(j?+N) − θ(j?) = min
jε{1,...,N−N}

(
θ(j+N) − θ(j)

)

the posterior density function (π (θ/Y )) is multimodal. If the posterior is symmetric, all HPD regions
will be symmetric about posterior mode (mean).

Koop (1992) presents a detailed revision of how to apply bayesian inference to the IRF in a structural
VAR context, his results can be easily adapted to the structural VAR-X model. Another reference on
the inference over IRF is Sims and Zha (1999). Here we present, in Algorithm 4, the method of Chen
and Shao (1998) for computing HPD regions from the output of the Gibbs sampler.9

It is important to note that bayesian methods are by nature conditioned to the sample size and,
because of that, avoid the problems of asymptotic theory in explaining the finite sample properties
of the parameters functions, this includes the skewness of the IRF and MA distribution functions.
Then, if the intervals are computed with the HPD, as in Chen and Shao (1998), they would be taking
into account the asymmetry in the same way as Kilians method. This is not the case for intervals
computed using only standard deviations although, with them, skewness can be addressed as in Koop
(1992), although bootstrap methods can be used to calculate approximate measures of this and others
moments, for instance, skewness and kurtosis, Bayesian methods are preferable since exact measures
can be calculated.

Another application of the structural VAR-X model is the forecast error variance decomposition
(FEVD), this is no different to the one usually presented in the structural VAR model. FEVD consists
in decomposing the variance of the forecast error of each endogenous variable h periods ahead, as with
the IRF, the matrices of C (L) are used for its construction. Note that, since the model is conditioned
to the path of the exogenous variables, all of the forecast error variance is explained by the structural
shocks. Is because of this that the FEVD has no changes when applied in the structural VAR-X model.
We refer to Lütkepohl (2005), Section 2.3.3, for the details of the construction of the FEVD. Again,
if bayesian methods are used for the estimation of the VAR-X parameters, the density function of the
FEVD can be obtained and several features of it can be explored, Koop (1992) also presents how to
apply bayesian inference in this respect.

9 The method presented is only valid if the distribution of the parameters of interest is unimodal. For a more general
treatment of the highest posterior density regions, including multimodal distributions, we refer to the work of Hyndman
(1996).
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5.2 Historical decomposition of the endogenous variables (HD)
The historical decomposition (HD) consists in explaining the observed values of the endogenous vari-
ables in terms of the structural shocks and the path of the exogenous variables. This kind of exercise
is present in the DSGE literature (for example, in Smets and Wouters (2007)) but mostly absent in
the structural VAR literature, being Canova (2007) an exception.10 Unlike the applications already
presented, the historical decomposition allows to make an statement over what has actually happened
to the series in the sample period, in terms of the recovered values for the structural shocks and the
observed paths of the exogenous variables. It allows to have all shocks and exogenous variables acting
simultaneously, thus making possible the comparison over the relative effects of them over the endoge-
nous variables, this means that the HD is particularly useful when addressing the relative importance
of the shocks over some set of variables. The possibility of explaining the history of the endogenous
variables instead of what would happen if some hypothetical shock arrives in the absence of any other
disturbance is at least appealing.

Here we describe a method for computing the HD in a structural VAR and structural VAR-X
context. The first case is covered in more detail and the second presented as an extension of the basic
ideas.

5.2.1 Historical decomposition for a structural VAR model

In a structural VAR context is clear, from the structural VMA representation of the model, that
variations of the endogenous variables can only be explained by variations in the structural shocks.
The HD uses the structural VMA representation in order to compute what the path of each endogenous
variable would have been conditioned to the presence of only one of the structural shocks. It is
important to note that the interpretation of the HD in a stable VAR model is simpler than the
interpretation in a VAR-X. This is because in the former there is no need for a reference value that
indicates when a shock is influencing the path of the variables. In that case, the reference value is
naturally zero, and it is understood that deviations of the shocks below that value are interpreted as
negative shocks and deviations above as positive shocks. As we shall see, when dealing with exogenous
variables a reference value must be set, and its election is not necessarily “natural”.

Before the HD is computed it is necessary to recover the structural shocks from the estimation of
the reduced form VAR. Define Ê = [ê1 . . . êt . . . êT ]

′
as the matrix of all fitted residuals from the VAR

model (equation (14) in the absence of exogenous variables). Recalling equation (9), the matrix C0

can be used to recover the structural shocks from matrix Ê as in the following expression:

Ê = Ê
(
C
′

0

)−1

(25)

Because zero is the reference value for the structural shocks the matrix Ê = [ε̂1 . . . ε̂t . . . ε̂T ]
′
can be

used directly for the HD.
The HD is an in-sample exercise, thus is conditioned to the initial values of the series. It will be

useful to define the structural infinite VMA representation of the VAR model, as well as the structural
VMA representation conditional on the initial values of the endogenous variables, equations (26) and
(27) respectively.

yt = µ+ C (L) εt (26)

yt =

t−1∑
i=0

Ciεt−i +Kt (27)

10 Another exception is found in King and Morley (2007) where the historical decomposition of a structural VAR is
used for computing a measure of the natural rate of unemployment for the US.
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Note that in equation (26) the endogenous variables depend on an infinite number of past structural
shocks. In equation (27) the effect of all shocks that are realized previous to the sample is captured by
the initial values of the endogenous variables. The variable Kt is a function of those initial values and
of the parameters of the reduced form model, Kt = ft

(
y0 , . . . , y−(p−1)

)
. It measures the effect of the

initial values over the period t realization of the endogenous variables, thus the effect of all shocks that
occurred before the sample. It is clear that if the VAR is stable Kt −→ µ for t sufficiently large, this
is because the shocks that are too far in the past have no effect in the current value of the variables.
Kt will be refer to as the reference value of the historical decomposition.

Starting from the structural VMA representation, the objective is now to decompose the deviations
of yt from Kt into the effects of the current and past values of the structural shocks (εi for i from 1 to

t). The decomposition is made over the auxiliary variable ỹt = yt −Kt =
t−1∑
i=0

Ciεt−i. The information

needed to compute ỹt is contained in the first t matrices Ci and the first t rows of matrix Ê .
The historical decomposition of the i-th variable of ỹt into the j-th shock is given by:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i (28)

Note that it must hold that the sum over j is equal to the actual value of the i-th element of ỹt,

ỹit =
n∑
j=1

ỹ
(i,j)
t . For t sufficiently large, when Kt is close to µ, ỹ(i,j)

t can be interpreted as the deviation

of the i-th endogenous variable from its mean caused by the recovered sequence for the j-th structural
shock.

Finally, the endogenous variables can be decomposed as well. The historical decomposition for the
i-th endogenous variable into the j-th shock is given by:

y
(i,j)
t = Ki

t + ỹ
(i,j)
t = Ki

t +

t−1∑
i=0

ciji ε̂
j
t−i (29)

the new variable y(i,j)
t is interpreted as what the i-th endogenous variable would have been if only

realizations of the j-th shock had occurred. The value of Kt can be obtained as a residual of the
historical decomposition, since yt is known and ỹt can be computed from the sum of the HD or from
the definition.

The HD of the endogenous variables (y
(i,j)
t ) can be also used to compute what transformations of

the variables would have been conditioned to the presence of only one shock. For instance, if the i-th
variable enters the model in quarterly differences, the HD for the annual differences or the level of the
series can be computed by applying to y(i,j)

t the same transformation used over yit, in this example, a
cumulative sum.

Algorithm 5 summarizes the steps carried out for the historical decomposition.

5.2.2 Historical decomposition for a structural VAR-X model

The structure already described applies also for a VAR-X model. The main difference is that now its
necessary to determine a reference value for the exogenous variables.11 It shall be understand that
realizations of the exogenous variables different to this value are what explain the fluctuations of the
endogenous variables. We shall refer to xt as the reference value for the exogenous variables in t.

11 The reference value for the exogenous variables need not be a constant. It can be given by a linear trend, by the
sample mean of the series,or by the initial value. When the exogenous variables enter the model in their differences, it
may seem natural to think in zero as a natural reference value, identifying fluctuations of the exogenous variables in an
analogous way to whats done with the structural shocks.
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Algorithm 5 Historical decomposition for a structural VAR model

1. Estimate the parameters of the reduced form VAR.

(a) Save a matrix with all fitted residuals
(
Ê = [ê1 . . . êt . . . êT ]

′)
.

(b) Compute matrices Ci according to the identifying restrictions (Algorithm 1 or 2).

2. Compute the structural shocks
(
Ê = [ε̂1 . . . ε̂t . . . ε̂T ]

′)
with matrix C0 and the fitted residuals of

the reduced form VAR:

Ê = Ê
(
C
′

0

)−1

3. Compute the historical decomposition of the endogenous variables relative to Kt:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i

4. Recover the values of Kt with the observed values of yt and the auxiliary variable ỹt:

Kt = yt − ỹt

5. Compute the historical decomposition of the endogenous variables:

y
(i,j)
t = Ki

t + ỹ
(i,j)
t

Steps 3 and 5 are repeated for t = 1, 2, . . . , T , i = 1, . . . , n and j = 1, . . . , n. Step 4 is repeated for
t = 1, 2, . . . , T .

As before, its necessary to present the structural VMA-X representation conditional to the initial
values of the endogenous variables (equation 30), with Kt defined as above. It is also necessary to
express the exogenous variables as deviations of the reference value, for this we define an auxiliary
variable x̃t = xt − xt. Note that equation (30) can be written in terms of the new variable x̃t as in

equation (31). In the later, the new variable K̃t =
t−1∑
i=0

Λix̄t−i +Kt has a role analogous to that of Kt

in the VAR context. K̃t properties depend on those of x̄t and, therefore, it can’t be guaranteed that
it converges to any value.

yt =

t−1∑
i=0

Ciεt−i +

t−1∑
i=0

Λixt−i +Kt (30)

yt =

t−1∑
i=0

Ciεt−i +

t−1∑
i=0

Λix̃t−i + K̃t (31)

The historical decomposition is now computed using matrices Ci, the recovered matrix of structural
shocks Ê , matrices Λi and the auxiliary variables x̃i, for i from 1 to T . Matrix Ê is still computed as in
equation (25). The new reference value for the historical decomposition is K̃t, and the decomposition
is done to explain the deviations of the endogenous variables with respect to it as a function of the
structural shocks and deviations of the exogenous variables from their own reference value, x̄t. For
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Algorithm 6 Historical decomposition for a structural VAR-X model

1. Estimate the parameters of the reduced form VAR-X.

(a) Save a matrix with all fitted residuals
(
Ê = [ê1 . . . êt . . . êT ]

′)
.

(b) Compute matrices Ci and Λi according to the identifying restrictions (Algorithm 1 or 2).

2. Compute the structural shocks
(
Ê = [ε̂1 . . . ε̂t . . . ε̂T ]

′)
with matrix C0 and the fitted residuals of

the reduced form VAR-X:

Ê = Ê
(
C
′

0

)−1

3. Compute the historical decomposition of the endogenous variables relative to K̃t:

ỹ
(i,j)
t =

t−1∑
i=0

ciji ε̂
j
t−i ỹ

(i,k)
t =

t−1∑
i=0

λiki x̃
k
t−i

4. Recover the values of K̃t with the observed values of yt and the auxiliary variable ỹt:

K̃t = yt − ỹt

5. Compute the historical decomposition of the endogenous variables:

y
(i,j)
t = K̃i

t + ỹ
(i,j)
t y

(i,k)
t = K̃i

t + ỹ
(i,k)
t

Steps 3 and 5 are repeated for t = 1, 2, . . . , T , i = 1, . . . , n , j = 1, . . . , n and k = 1, . . . ,m. Step 4 is
repeated for t = 1, 2, . . . , T .

notation, variable ỹt is redefined: ỹt = yt− K̃t =
t−1∑
i=0

Ciεt−i +
t−1∑
i=0

Λix̃t−i. The decomposition of the i-th

variable of ỹt into the j-th shock is still given by equation (28), and the decomposition into the k-th
exogenous variable is given by:

ỹ
(i,k)
t =

t−1∑
i=0

λiki x̃
k
t−i (32)

Variable ỹ(i,k)
t , for k from 1 to m, is interpreted as what the variable ỹit would have been if, in

the absence of shocks, only the k-th exogenous variable is allowed to deviate from its reference value.

As in the VAR model, it holds the following equation: ỹit =
n∑
j=1

ỹ
(i,j)
t +

m∑
k=1

ỹ
(i,k)
t . The variable K̃t is

recovered in the same way used before to recover Kt.
The historical decomposition of the endogenous variables can be computed by using the recovered

values for K̃t . The decomposition of the i-th variable into the effects of the j-th shock is still given
by equation (29), if Ki

t is replaced by K̃i
t . The decomposition of the i-th variable into the deviations

of the k-th exogenous variable from its reference value is obtained from the following expression:
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y
(i,k)
t = Ki

t + ỹ
(i,k)
t (33)

Variable y(i,k)
t has the same interpretation as ỹ(i,k)

t but applied to the value of the endogenous
variable, and not to the deviation from the reference value.

Although the interpretation and use of the HD in exogenous variables may seem strange and
impractical, it is actually of great utility when the reference value for the exogenous variables is chosen
correctly. The following example describes a case in which the interpretation of the HD in exogenous
variables is more easily understood. Consider the case in which the exogenous variables are introduced
in the model in their first differences. The person performing the study may be asking himself the
effects of the shocks and the changes in the exogenous variables over the endogenous variables. In this
context, the criteria or reference value for the exogenous variables arises naturally as a base scenario of
no change in the exogenous variables and no shocks. Under the described situation one has, for all t,
xt = 0 and K̃t = Kt. This also allows to interpret both y(i,k)

t and ỹ(i,k)
t as what would have happened

to the i-th endogenous variable if it were only for the changes of the k-th exogenous variable.
Algorithm 6 summarizes the steps carried out for the historical decomposition in a structural

VAR-X setup.
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A An application

In this appendix some of the concepts presented in the document are exemplified by an application of
Galí (1999)’s structural VAR, augmented with oil prices as an exogenous variable. The exercise has
illustrative purposes only and does not mean to make any assessment on the economics involved.

The Appendix is organized as follows: first a description of the model to be used is made, then
the lag structure of the reduced form VAR-X is chosen and the estimation described. Finally, impulse
response functions, multiplier analysis and the historical decomposition are presented for one of the
model’s endogenous variables.

A.1 The model and the data
The model used in this application is original from Galí (1999) and is a bi-variate system of labor
productivity and a labor measure.12 The labor productivity is defined as the ratio between product
(GDP) and labor. The identification of the shocks is obtained by imposing long run restrictions a
la Blanchard and Quah (1989). Two shocks are identified, a technology (productivity) shock and a
non-technology shock, the former is assumed to be the only shock that can have long run effects on the
labor productivity. As pointed out in Galí (1999) this assumption is maintain in neoclassical growth,
RBC and New-Keynesian models among others.

The model is augmented with oil prices as an exogenous variable with the only purpose of turning
it into a structural VAR-X model, so that it can be used to illustrate some of the concepts of the
document. As mentioned in Section 2 the presence of an exogenous variable doesn’t change the
identification of the structural shocks.

All variables are included in the model in their first differences, this is done partially as a condition
for the long run identification (labor productivity) and partially because of the unit root behavior of
the observed series. It should be clear that, in the notation of the document, n = 2 (the number of
endogenous variables) and m = 1 (the number of exogenous variables).

Noting by zt the labor productivity, lt the labor measure and pot the oil price, the reduced form
representation of the model is given by equation (1) with yt =

[
∆zt ∆lt

]′
and xt = ∆pot :

yt = v +B1yt−1 + . . .+Bpyt−p + Θ0xt + . . .+ Θqxt−q + et

In the last equation vector v is of size 2 × 1, matrices Bi are of size 2 × 2 for i = 1 : p and all Θj

are 2× 1 vectors. The structural VMA-X form of the model is given (as in equation (4)) by:

yt = µ+ C (L) εt + Λ (L)xt

with µ a 2 × 1 vector, each matrix of C (L) is of size 2 × 2, and the “coefficients” of Λ (L) are 2 × 1
vectors. εt =

[
εTt εNTt

]
is the vector of structural shocks.

The identification assumption implies that C (1) is a lower triangular matrix, this allows us to use
algorithm 2 for the identification of the shocks and the matrices in C (L). Equations (5), (6) and (7)
still hold.

The data set used to estimate the model consists in quarterly GDP, non-farm employees and oil
price series for the US economy that range from 1948Q4 to 1999Q1. The quarterly GDP is obtained
from the Bureau of Economic Analysis, and the non-farm employees and oil price from the FRED
database of the Federal Reserve Bank of St. Louis. GDP and non-farm employees are seasonally
adjusted. GDP is measured in billions of chained 2005 dollars, non-farm employees in thousands of
persons and oil prices as the quarterly average of the WTI price in dollars per barrel.

12 Galí uses total hours worked in the non-farm sector as labor measure in the main exercise but also points at the
number of employees as another possible labor measure, here we take the second option and use non-farm employees.
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Tab. 1: Marginal Densities

m0 (Y ) m1 (Y ) m2 (Y ) m3 (Y ) m4 (Y ) m5 (Y ) m6 (Y )

6.1379 6.1268 6.1664 6.1817 6.2414 6.1733 6.1115
The values presented are proportional to the marginal densities of the models by a factor of 1013C.

A.2 Lag structure and estimation
Choosing the lag structure of the model consists in finding values for p and q so that the estimated
reduced form model satisfies some conditions. In this case we shall choose values for p and q so that the
residuals (et) are not auto-correlated.13 The tests indicate that four lags of the endogenous variables
are necessary for obtaining non-auto-correlated residuals (p = 4), this result is independent of the lags
of the exogenous variable. The change of the oil prices can be included only contemporary (q = 0) or
with up to six lags (q = 6).

Since any number of lags of the exogenous variables makes the residuals satisfy the desired condition,
the marginal density of the different models (under the Jeffreys prior) is used to determined the value
of q. Each possible model only differs in the lags of exogenous variable, there are seven models indexed
as mi (Y ) with i = 0 . . . 6. The marginal density for each model is computed as in equation (23):

mi (Y ) =
Γn
(
T−ki

2

)
Γn
(
T−ki−n−1

2

) |Si|−n−1
2 2

n(n+1)
2 C

A presample is taken so that all models have the same effective T , since all have the same number
of endogenous variables (n = 2), the only difference between the marginal density of two models is in
ki (the total number of regressors) and Si (the estimated covariance of the residuals). Recalling from

Section 3: ki = (1 + np+m (qi + 1)) and Si =
(
Y − ZiΓ̂i

)′ (
Y − ZiΓ̂i

)
.

Table 1 presents the results of the marginal densities, it is clear that the marginal density doesn’t
increase monotonically in the exogenous lag and that m4 (Y ) (q = 4) is preferred to the other mod-
els. Then, the VAR-X model is estimated with four lags in both the endogenous and the exogenous
variables, and the contemporary value of the change in the oil price.

The estimation is carried out by bayesian methods under the Jeffreys prior as in Section 3.2.
Algorithm 3 is applied to obtain 10,000 draws of the reduced form parameters, for every draw Algorithm
2 is applied, along with the identification restriction over the technology shock, to obtain the parameters
of the structural VMA-X representation of the model.

A.3 Impulse response functions and multiplier analysis
From the output of the bayesian estimation of the model the impulse response function and multipliers
are computed. Note that the distributions of the IRF and the multipliers are available since the
estimation allows to obtain both for each draw of the reduced form parameters. This makes possible
to compute highest posterior density regions (HPD) as mentioned in Section 5.1. For doing so we
presented, in Algorithm 4, the steps to be carried out in the case in which the distribution of the
IRF and the multipliers in every period is unimodal. Here we present only the response of labor to a
technology shock and a change in oil price as the posterior mean of the responses generated for each of
the 10,000 draws of the parameters, the responses are presented along with HPD regions at 68% and
90% probability.

Before presenting the HPD for the IRF and the multipliers its necessary to check if the distribution
of the responses in every period are unimodal. Although no sufficient, a preliminary test of the
mentioned condition is to check the histograms of the IRF and the multipliers before computing the

13 The auto-correlation of the residual is tested whit Portmanteau tests at a 5% significance level. See Lütkepohl
(2005), Section 4.4.3.



A An application 20

Fig. 1: Histograms

(a) IRF: Labor to tech shock at impact
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(b) MA: Labor to oil price at impact
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Histograms of the response of labor to a technology shock and a change in the oil price at impact. The histograms are

obtained from 10000 draws of the parameters of the structural VAR-X model, and are computed with 100 bins.

HPD. Figure 1 presents the histograms for the response of labor to a technology shock (Figure 1a)
and to a change in oil price (Figure 1b) at impact, the histograms for up to 20 periods ahead are also
checked, but not presented. In all cases Algorithm 4 can be used.

The results are presented in Figure 2 and point to a decrease of labor in response to both a positive
technology shock and an increase in oil prices, although the decrease is only significant for the response
to a technology shock. The response of labor to an increase in the oil price is never significant at 90%
probability and only significant at 68% probability after period 5.

Fig. 2: IRF and MA

(a) IRF: Labor to tech shock
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(b) MA: Labor to oil price at impact
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Response of labor to a unitary technology shock and a unit change in the oil price. The point estimate (dark line) corresponds

to the posterior mean of the distribution of the IRF and the multipliers of labor, the distributions are obtained from 10000

draws of the parameters of the structural VAR-X model. HPD regions at 68% and 90% probability are presented as dark

and light areas correspondingly.

A.4 Historical decomposition
Finally, the historical decomposition of labor into the two structural shocks and the changes in the oil
price is computed. As mentioned in Section 5.2 its necessary to fix a reference value for the exogenous
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Fig. 3: Historical Decomposition - Labor in first difference
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variable. Since the oil price enters the model in its first difference, the reference value will be set to zero
(∀t xt = 0). This means that all changes in the oil price are understood by the model as innovations
to that variable.14 In this exercise all computations are carried out with the posterior mean of the
parameters. Since the Jeffreys prior was used in the estimation, the posterior mean of the parameters
equals their maximum likelihood values.

Applying Algorithm 6, steps 1 to 3, the historical decomposition for the first difference of labor
(relative to K̃t) is obtained, this is presented in Figure 3. Yet, the results are unsatisfactory, principally
because the quarterly difference of labor lacks of a clear interpretation, its scale is not the one commonly
used and might be too volatile for allowing an easy understanding of the effects of the shocks.15

An alternative to the direct historical decomposition is to use the conditioned series (step 5 of
Algorithm 6) to compute the historical decomposition of the annual differences of the series, this is
done by summing up the quarterly differences conditioned to each shock and the exogenous variable.
The advantage of this transformation is that it allows for an easier interpretation of the historical
decomposition, since the series is now less volatile and its level is more familiar for the researcher (this
is the case of the annual inflation rate or the annual GDP growth rate). The result is presented in
Figure 4, it is clear that labor dynamics have been governed mostly by non-technology shocks in the
period under consideration, with technology shocks and changes in the oil price having a minor effect.

Its worth to note that decomposing the first difference of the series (as in Figures 3 and 4) has
another advantage. The decomposition is made relative to K̃t with xt = 0, hence K̃t = Kt and
K̃t −→ µ, this means, for Figure 3, that the decomposition is made relative to the sample average of
the quarterly growth rate of the series, in that case if the black solid line is, for example, 0.1 at some
point it can be read directly as the growth rate of labor being 10% above its sample average. Since
Figure 4 is also presenting differences it can be shown that the new K̃t converges to the sample mean
of the annual growth rate of the series, making interpretation of the decomposition easier to read.

Another alternative is to accumulate the growth rates (conditioned to each shock and the exogenous
14 Another possibility is to use the sample mean of the change in the oil price as a reference value, in this case the

innovations are changes of the oil price different to that mean.
15 In fact the series used is not too volatile, but there are other economically relevant series whose first difference is

just too volatile for allowing any assessment on the results, the monthly inflation rate is usually an example of this.
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Fig. 4: Historical Decomposition - Labor in annual differences
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variable) starting from the observed value of the series in the first period, this generates the historical
decomposition of the level of the variable. The results of this exercise are presented in Figure 5.

There are several points to be made about the historical decomposition in levels, the first one is
that, since K̃t is also being accumulated from some initial value, the decomposition is not made relative
to a constant but relative to a line, this line corresponds to the linear tendency of the series. Figure 5a
plots the actual path of labor along with path conditioned to each shock and the exogenous variable
and the “Reference” line, which is the accumulation of K̃t. Interpretation of Figure 5a is difficult
because the effect of each shock and the exogenous variable is obtained as the difference between its
conditioned path and the “Reference” line, because all are moving in each period identifying that effect
becomes a challenging task.

The second point arises from the interpretation of Figure 5b, which presents the decomposition of
the level of labor relative to the “Reference” line, this is similar to what was presented in Figures 3 and
4. The interpretation is nevertheless more complicated. In the former Figures the decomposition was
made relative to a constant, but the decomposition in levels is made relative to a line, whose value is
changing in each period, this makes the reading of the level of the bars and the line more difficult. If
the line is in 3 it means that the observed series is 3 units above its linear tendency.

Another characteristic of decomposition in level must be mentioned, although it is not clear from
Figure 5b, the accumulated effects of the shocks over any series in the first and last period are, by
construction, equal to zero. This means that the bars associated with the structural shocks are not
present in both the first and last period of the sample, and that the value of the observed variable has
to be explained entirely by the exogenous variables, moreover, it means that the accumulated effect of
the shocks has to be dis-accumulated when the sample is getting to its end. This occurs because the
accumulated effect of the shocks has to be zero at the beginning of the sample, since the effect of the
shocks before that point is summarized in the initial value of the series, and because the mean of the

shocks over the sample is zero (one of the properties of the estimation), this implies that
T∑
t=1

εit = 0.

When the conditioned difference series is accumulated, the effect of the shock is accumulated so that
it also sums to zero. This last problem is not present in the historical decomposition in differences (or
annual differences) and makes the results of the decomposition in levels to be unreliable.
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Fig. 5: Historical Decomposition - Labor in level

(a) Decomposition in level
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(b) Decomposition around reference value
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