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Abstract

This article analyzes identification problems that may arise while lin-
earizing and solving DSGE models. A criterion is proposed to determine
whether or not a set of parameters is partially identifiable, in the sense
of Canova and Sala (2009), based on the computation of a basis for the
null space of the Jacobian matrix of the function mapping the parameters
with the coefficients in the solution of the model.
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1 Introduction

As Canova and Sala (2009) have pointed out, not enough attention has been
devoted to analyze identifiability in the context of DSGE models estimation.
This is surprising since many researchers interested in matching these models
with the data have recently turned their attention to likelihood based estimation
methods, mainly, to Bayesian estimation techniques. A notable exception to
this peculiar omission is the article by Canova and Sala (2009) in which they
highlight and classify many of the identification issues that may arise while
estimating DSGE models and propose various tools to detect them.

Based on an objective function measuring the distance between the model
impulse - response functions and those obtained from a structural VAR, Canova
and Sala (2009) used a standard RBC model as a preliminary example to il-
lustrate some common features related to parameter identification. To check
for partial identification, they fix most of the parameters of the model and plot
the surface and the contour sets of the objective function, varying only two
parameters at a time. Such analysis of the objective function shows that it is
flat or nearly flat in some subsets of its domain (again, considered as a function
of two parameters only). This approach to recognize partial identification is
clearly useful when a data set is considered and a real valued objective function
has been previously defined, but a more general method can be proposed for
the case where such problems arise directly from the solution of the model. In
fact, Canova and Sala go further and observe that some parameters are partially
unidentifiable because their individual effects on the coefficients of the matrices
expressing the solution of the linear model are proportional. To do so, they
compute the partial derivatives of the function mapping the parameters to the
coefficients of the solution of their RBC model.

Pointing in the same direction, Iskrev (2007) applies the decomposition of the
information matrix, proposed by Rothenberg (1966), to separate those identifi-
cation issues that come from the structure of the model from those that appear
once some data is considered. As Canova and Sala mention, usually unidenti-
fiability is caused by an ill-behaved mapping between the parameters and the
coefficients of the solution of the model; hence they propose to compute the
rank of the Jacobian matrix of that mapping as a criterion to determine if some
parameters cannot be identified, no matter what objective function is used for
the estimation or how much information is considered.

This article focuses exclusively on identification issues that arise in the pro-
cess of solving the model. It is a common practice to solve DSGE models by
(log)linearizing them around some specific point, usually their steady state,
and then applying a numerical algorithm to solve linear rational expectations
models. The coeflicients in the solution of the model end up being non linear
functions of its parameters; some of this functions could be non injective giving
rise to unidentifiable parameters. A direct consequence of the inverse function
theorem is that the function mapping the parameters with the solution of the
model would be locally injective if its Jacobian matrix had full column rank (as-
suming that the number of coefficients in the matrices expressing the solution



is greater than the number of parameters).

Iskrev (2008) proposes a method to obtain this Jacobian analytically for the
case of a linearized DSGE model whose solution has been computed numerically.
Since the computation of the rank of a matrix is highly sensitive to errors due to
numerical precision, if possible, the use of analytical derivatives is recommended.
Nonetheless, if the steady state of the model cannot be computed analytically,
Iskrev’s method cannot be fully applied either!. Unfortunately, many DSGE
models intended to be empirically evaluated, such as those used world wide at
the Central Banks for policy analysis and forecasting, are complex enough to
prevent the analytic calculation of their steady state. But even in those cases,
Iskrev’s application of the implicit function theorem can be complemented with
the chain rule for multivariate functions, as shown in the second section of this
article, to considerably reduce the amount of numerical computations in the
derivation of the Jacobian.

In section 3, the problem of partial identification due to the solution of the
model is considered and a criterion for detecting it is proposed, based on the
calculation of a basis for the null space of the Jacobian matrix of the function
mapping the parameters with the solution of the model. The main idea behind
the test is that some vector in the basis of this null space has a non-zero entry
in its i-th coordinate if and only if the corresponding column of the Jacobian
matrix has a non-zero coefficient in a zero linear combination of those columns.
Intuitively, this criterion points out those parameters in the model that are re-
sponsible for a rank deficient Jacobian and thus it can be used to find partially
identifiable parameters in the sense of Canova and Sala (2009). More specifi-
cally, in virtue of Proposition 2, the criterion proposed allows us to easily build
maximal sets of identifiable parameters, i.e., parameters whose identification
problems, if any, do not come from the structure of the model.

2 The solution of the model

Following Uhlig (1995), a (log)linearized DSGE model can be written as:

Et [Fl’t+1 + Gl’t + Jl't_l + LZtJ’_l + MZt] =0 (1)
z41 =Nz + €13 Eifepn] =0

where z;_1 is a m x 1 vector of endogenous state variables, z; is a vector of
exogenous stochastic processes of size n x 1 and €; can be assumed independent,
identically and normally distributed. The coefficient matrices F', G, J, L, M
and N are nonlinear functions of a k x 1 vector, 6, containing the parameters of
the nonlinear DSGE model. Iskrev (2008) introduces a convenient notation that
we will follow here. To begin with, the s x 1 vector containing the coeflicients
of the matrices in the structural model (1) is denoted by =, so clearly « is a
nonlinear function of the deep parameters 6.

I This observation was made to me by Andrés Gonzalez while jointly estimating a DSGE
model for the Colombian economy proposed by Gonzalez et al. (2009)



According to Uhlig (1995), the solution to (1) can be written as a recursive
equilibrium law of motion :

Ty = Py + Qz (2)

where matrices P and () are assumed to be such that the corresponding equi-
librium is stable. As in Iskrev (2008), let ¢ = [vec (P)/,vec(Q)/}/ be the
(m? +mn x 1) vector whose components are the corresponding coefficients in
(2), then the solution of the nonlinear DSGE model can be seen as a function
h mapping 0 to ¢.

Equation z¢11 = Nzi+€.41 can be lagged one period and substituted into (2)
to obtain z; = Pxi—1 + Q (Nzt—1 + €). Furthermore, a measurement equation
can be added to the system so that a possible state space representation of the
model is:

x| | P QN Te—1 Q
R o nd A PR CRC
Tt
yt:c[zt:|+Ut

If ¢, and u; are normally distributed, the Kalman filter can be used to
obtain the conditional log-likelihood function, I (y, §). Maximum likelihood and
Bayesian estimation methods require the maximization of either the likelihood
function or a posterior distribution.

A traditional approach to recognize unidentified parameters in a likelihood-
based estimation framework is to calculate the rank of the information matrix,
defined as:

So = —Eloo (y,0)]

There is a considerable number of methods available to compute the infor-
mation matrix. For the case of a linear model with non linear restrictions, as
(3), Iskrev (2008) quotes Rothenberg (1966) to remark that Sy can be decom-
posed into the product of the information matrix of the unrestricted model and
a matrix H with the derivatives of the nonlinear restrictions on the parameters.

!/
R P N R N/ N\

To do so, let P = [ 0 QN }, and ¢ = {vec (P) ,vec (Q) ] . As Iskrev
(2008) points out, 8 affects [ (y, §) through ¢ only, via a function ¢ = h (0). Fur-
thermore, if H = hy is the Jacobian matrix of i then, as shown by Rothenberg
(1966), ¢ can be calculated by:

Sg=H'S oH (4)
where S5 is the information matrix of the unrestricted reduced-form model (3).

Iskrev (2008) mentions several authors who have proposed analytical meth-
ods to derive the information matrix of a linear state space model, so it is not
necessary to name them again here. His contribution is to propose an analytical



expression for H, when it can be seen as the Jacobian of a function expressing
the solution of a nonlinear DSGE model.

Usually, the solution of such a model cannot be computed analytically. In
fact, many recent papers in the field are concerned with the problem of finding
an efficient algorithm to derive it numerically, as those proposed by Blanchard
and Kahn (1980), Anderson and Moore (1985), Uhlig (1995), Klein (2000) and
Sims (2002) among others. This means that in many of the cases of interest, we
can only obtain a numerical representation of the solution of the model (2) and,
of course, of its state space form (3). Insofar as the functions h and h cannot
be obtained analytically, an analytical expression for H cannot be obtained by
direct non-numerical differentiation of these functions. Hence, Iskrev (2008)
proposes to apply the implicit function theorem to find H.

In fact, as stated by Uhlig (1995), since the recursive law of motion (2) solves
equations (1) then the following hold:

(FP+G)P+J=0 (5)

(FQ+ L)N+ (FP+G)Q+M =0 (6)

Assuming that (1) has a unique solution, as Iskrev (2008) does, equations
(5) and (6) can be thought as defining an implicit function F : RE+m’+mn _,
R™ +mn guch that F (0,¢) = 0 if and only if ¢ = h (#). So the implicit function
theorem implies that:

H=—Fy(0,8)"" Fy (0,0)

where Fy (0, ¢) and Fy (6, ¢)are the corresponding Jacobian matrices of F.

It is convenient to remember, however, that the coefficients of the structural
model (1), contained in -, are functions of the vector of parameters 6 obtained
by (log)linearizing the nonlinear DSGE model around some point, usually its
steady state. For the common case of the steady state, and for many other
cases that might be interesting to consider, such point varies with 6. Therefore,
~ depends on @ directly but also through the steady state, and then it can be
thought as a function of the form +y (6, ss (6)). The problem here is that in most
of the non trivial cases the steady state values cannot be obtained as an explicit
function of the parameters 6. In fact, it is common practice to use numerical
algorithms to find the steady state of a DSGE model for a given vector 6. For
example, the latest versions of Dynare, a program for solving and estimating
rational expectations models described in Juillard (2001), includes four different
algorithms among which the user may choose in order to achieve this task. In
such cases, Iskrev’s method cannot be applied since some derivatives of F (6, ¢)
cannot be computed analytically, specifically those expressed in terms of the
steady state values of the variables in the model.

Fortunately, the problem mentioned above can be solved partially by means
of a simple application of the chain rule. Iskrev’s main concern in finding an
analytical expression for H is to reduce the degree of numerical error in the
computation of the information matrix, as stated in Iskrev (2007), and even



for the case where the steady state cannot be solved explicitly as a function of
0, most of the derivatives involved in the computation of Fy (6, ¢) can still be
obtained analytically. In fact, since F' depends on 6 only through -, then:

Fy (0,0) = F, (0,0) (0 (0,55 (0)) + 7ss (0, 55 (0)) 550 (0))

and all these derivatives can be computed analytically, except for ssg (6).

3 Partial identifiability

The fact that the information matrix can be decomposed as in equation (4)
allow us to isolate those parameters that cannot be identified only due to of
the specification, linearization or solution of the model, independently of the
estimation criteria or the data, as Iskrev (2007) points out. In terms of Canova
and Sala (2009), if matrix H does not have full column rank then we may have
what they call a problem of lack of or partial identification. In particular, lack
of identification issues, i.e., the existence of parameters that somehow disappear
either in the linearization or in the solution of the model, are easy to recognize
after computing H. In fact, since, H;; = g%ﬁ;}, if a single parameter ¢; cannot
be identified, the corresponding column of H is the vector 0.

Now, suppose that ©; is the economically relevant subset of R determining

m 2 +mn

the values that 6; can take, and consider the function A : 0, x..x0;, — R
obtained by restricting h to ©;, x ... x ©;, and fixing all other parameters in
vector #. If h is not injective then there are different combinations of these
parameters for which the solution of the model (the coefficients in ¢) are the
same. In that case, we would have partial identification in the sense of Canova
and Sala and, correspondingly, we will call {(92-1 s eee Gip} a set of partially identi-
fiable parameters (SPIP). Hence, the rank of H would be less than the number
of columns, k. This follows immediately from the fact that, in general, if h
is a continuously differentiable function from an open subset of R¥ to R!, with
k <, and its Jacobian matrix H has full column rank then it is locally injective.
It should be emphasized, however, that having a full column rank Jacobian is
just a sufficient but not a necessary condition for the function A to be locally
injective?, so we cannot conclude that there are unidentifiable parameters from
the fact that H has not full column rank. Nevertheless, the rank of H still gives
us some useful information about the identifiability of the parameters of the
model. In fact, the two propositions stated and proved below provide an easy
way to find maximal sets of parameters that are not partially identifiable, in
the previous sense.

Note that if {Hil,...,Hip} is a SPIP, as defined above, then 6;,,....0; ,0;
are also partially identifiable. On the contrary, if one parameter is taken out
from the set the case might be that the resulting set is not a SPIP, i.e., that the
function h restricted to ©;, x ... x © X ©; . X ©; is locally injective. The

-1 L

2The function f (z,y) = (x3, y3), for example, has a singular Jacobian at (0,0); neverthe-
less, it is injective in all its domain



rank deficiency of H only tells us that there may be SPIPs but what would be
more useful to the researcher is to know which are those sets. Furthermore, if
there is such a set then any other set containing it is also a SPIP, in particular the
set with all the parameters of the model; thus the search for partially identifiable
parameters may be restricted to those sets such that none of its proper subsets
are partially identifiable. If a SPIP has this property, we will call it a minimal
set of partially identifiable parameters (MSPIP).

The fact that a parameter 6; does not belong to any MSPIP means that the
structure of the model does not prevent 6; from being identified. Any possible
lack of identification related to this parameter in a likelihood-based estimation
process must be attributed to the data set considered. Hence, knowing which
parameters have this property is as far as we can go if we are interested in
finding those identification issues that come from the structure of the model.

Suppose that S = {6;,,...,6;, } is a SPIP; the main difficulty in establishing
if S is also a MSPIP is that it has to be determined whether or not all the
restricted functions resulting from removing exactly one parameter from S are
injective. A sufficient condition which is easy to verify is that the corresponding
Jacobian matrices of all such functions have full column rank, but again it is
not a necessary condition.

Abusing notation for the sake of briefness, let’s call a set of parameters of
the model linearly dependent if their corresponding columns in matrix H are,
properly speaking, linearly dependent. As before, a minimal set of linearly de-
pendent parameters (MSLDP) is a set of linearly dependent parameters, in the
previous sense, such that none of its proper subsets are linearly dependent. Note
that, since the full column rank condition is sufficient for i and for any of its
restrictions, i~z7 to be injective, then every MSLDP whose elements are partially
identifiable is a also a MSPIP. Consequently, at least some of the MSPIPs can be
recovered if we can recognize the MSLDPs, which is clearly easier. Proposition
1 generalizes the full column rank condition to state a criterion for recognizing
those parameters of the model that belong to some MSLDP. Moreover, Propo-
sition 2 applies such criterion to obtain the intersection of all the maximal sets
of linearly independent parameters, none of which is a SPIP, and thus it makes
it easier to find those sets. In order to prove the propositions, two previous
lemmata shall be stated beforehand.

Lemma 1. Let hg, be the column of matrix H corresponding to 6;. Suppose
{91-1 s s 9%} is a MSLDP, then there is a vector a € RP such that Z§=1 o hgij =
0 and aj #0 forall j=1,...,p.

Proof. If we agree that the empty set is linearly independent, then the only
single-element minimal set of linearly dependent vectors is the one containing
the vector zero, so the conclusion of the lemma follows trivially for p = 1. Now
suppose that p > 2 and let H = [h@il ...h@ip} then, by assumption, there is

an a € RP such that Ha = 0. It remains to be proved that aj # 0 for all
j =1,...,p, so, on the contrary, suppose that there is a j such that o;; = 0, then
Zl# arhg, = 0 and oy, # 0 for some k # j, so there are p— 1 linearly dependent



vectors in H and thus {9i1>~-~79ip} is not a MSLDP. O

Lemma 2. Let vy,...,v, € RE, with p > 2, and suppose there is an o € RP
such that Y% a;v; = 0 and a; # 0 for some j . If v1,...,0-1,Vj41, .., Up
are also linearly dependent then there is a j # j and p — 1 real numbers
Bisews B5_1: 85415 - Bp such that 2#3 Bivi =0 and B; # 0.

Proof. By assumption, v1,...,Vj—1,Vj41,...,Vp are linearly dependent so there
are Vi, ..., %j—1,%j+1, - Yp € R such that }-, . ~vv; = 0 and v; # 0 for some

J # j. Therefore, V: =D it (—;’—J) v; and then Y7 a,v; = Ditgig] QiVit
o0+ auj = 30005 Bivi + ajvj, where 3 = o —aﬁ.;’—; foralli e {1,....k} —

{j,}}. Finally, let 8; = o # 0, then 3_, 5 B;v; = > a;v; = 0 and the proof
is complete. O

Proposition 1. Let By be a basis for the null space of the Jacobian matrixz H.
b; =0 for allb € By if and only if parameter 6; does not belong to any MSLDP.

Proof. Let N'(H) = {z € R¥: Hz =0} be the null space of H, and By C
N (H) a set of linear independent vectors that spans N (H), i.e., a basis for
N (H). Suppose that there is an i € {1,...,k} such that b; = 0 for all b € By,
then, since every € N (H) is a linear combination of the elements of By, 2; = 0
for all z € N (H). On the other hand, if H does not have full column rank,
i.e., if its columns are linearly dependent then, by definition, there is a vector
a € R¥, with a; # 0 for some j € {1,...,k}, such that Ha =0, so « € N (H)
and, given our assumption on By, j # i. In other words, there is no linear
combination of the columns of H, denoted by hg,, such that Zf:l athg, =0
and a; # 0. Therefore, by Lemma 1, if b; = 0 for all b € By there is no minimal
set of linearly dependent parameters containing 6;.

To prove the other direction, suppose that there is an i € {1,...,k} such
that b; # 0 for some b € By. Let b be a vector of size p obtained by removing
all zero components from b, and, without loosing generality, assume that we
have reorganized its components so that l;p = b;. Note that if p = 1 then
¢; = 0 which clearly belongs to a MSLDP. If p > 2, then there are parameters
{0i,....,0;, .} such that 30~} bihg,, + byhg, = 0. If for any proper subset of
P = {9i17~--7 Hipfl,Qi} of size p — 1 the corresponding parameters are linearly
independent, then P is a MSLDP to which 6; belongs. So let’s assume there is
at least one of these proper subsets whose elements are linearly dependent. It is
intuitively clear that we could always remove as many parameters as necessary
from P, one at a time, until we get a MSLDP. Furthermore, as far as the size
of the set considered is not less than 2, Lemma 2 guarantees that we can do so
without getting rid of 6;; therefore 6; belongs to the resulting MSLDP. O

Proposition 2. Suppose that the rank of H is v > 1. Parameter 0; does not
belong to any MSLDP if and only if it belongs to all the sets containing r linearly
independent parameters of the model.



Proof. Suppose that 6; does not belong to any MSLDP but that there are r
linearly independent parameters distinct from 6;, denoted by, 6;,,...,0;.. Since
the rank of H is r, parameters 0;,, ..., ; ., 0; must be linearly dependent, so there
are aq, ..., a1 € R such that Z;Zl ajhe, + aryihy, = 0 and q; # (0 for some
j € {1,..,r+1}. However, by Proposition 1, a.y1 = 0 so j # r + 1. Hence,
22:1 ajhg, =0 and a; # 0 for some j € {1,...,7} which contradicts the fact
that 6;,,...,0;, are linearly independent.

Now, suppose that 8; € M, where M is a MSLDP. If hy, = 0 then is obvious
that #; does not belong to any set containing r linearly independent parameters
of the model. Thus, let hy, # 0, it follows that the nonempty set S = M — {6;}
is linearly independent. If |S| = r, there is a set of r linearly independent
parameters to which 6; does not belong. So let’s assume that |S| < r, since the
rank of H is r, S cannot be maximal, i.e., there is a set of linearly independent
parameters properly containing S. Moreover, there must be a set R of r linearly
independent parameters such that S C R. However, M ¢ R because M is
linearly dependent, so 6; ¢ R. In any case, if 6; belongs to a MSLDP it does
not belong to some set containing 7 linearly independent parameters. O

4 Conclusion

Insofar as the sole solution of the model is concerned, the problem of partial
identifiability could be expressed in terms of the existence of minimal sets of
parameters such that the function whose values are the coefficients of the so-
lution of the model, restricted to those parameters, is non-injective. If we are
interested in finding the minimal sets of linearly dependent parameters, as a
previous attempt to find minimal sets of partially identifiable parameters, after
computing a basis for the null space N'(H) our search will be considerably re-
duced. In fact, Proposition 1 provides a criterion to determine exactly which
parameters of the model belong to some MSLDP. Then, any combination of
these parameters could be tested using the conventional full rank condition to
determine whether or not it is a MSLDP. In the other hand, according to Propo-
sition 2, the computation of a basis for the null space can be used to determine
exactly which parameters belong to all maximal sets of linearly independent
parameters and, thus, it facilitates the search for these sets. Furthermore, since
the Jacobian matrix of the restricted function corresponding to any of these
sets has full column rank, the restricted function is locally injective. Therefore,
even if we cannot easily recognize MSPIPs, we can still use Proposition 2 to find
sets of parameters which do not have the problem of being partially identifiable
due to the structure of the model, moreover, to find those among such sets that
are maximal in the sense that if any other parameter is added to the set, the
corresponding Jacobian matrix would not have full column rank.
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