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Abstract

In this paper, I estimate the non-parametric optimal bond portfolio choice
of a representative agent that acts optimally with respect to his/her
expected utility one period forward, provided that he/she observes the ex
ante liquidity signal. Using daily observations of zero-coupon Treasury
and TIPS bonds yields, I construct equally-weighted returns from 2004-
2012. Considering alternative measures of liquidity, I find that the
liquidity differential between nominal and TIPS bonds appears to be a
significant determinant of the portfolio allocation to U.S. government
bonds. In fact, conditional allocations in risky assets decrease as
market liquidity conditions worsen, and the effect of market liquidity
decreases with the investment horizon. I also find that the bond return
predictability translates into improved in-sample and out-of-sample asset
allocation and performance.
Keywords: Liquidity risk, optimal portfolio allocation, predictability,
bond risk premia, non-parametric estimation.
JEL classification: C13, C52, G11, G32,

1 Introduction

Numerous empirical studies conclude that excess bond returns are predictable
in the sense that they depend on the current value of some predictor
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variables. In addition, the term structure slope, the forward spread, the
lagged excess returns, the Cochrane and Piazzesi (2005) tent-shaped factor,
and macroeconomic fundamentals are some of the variables that have been
identified as predictors for Treasury bonds (Fama and Bliss (1987), Campbell
and Shiller (1991), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009)
and Cooper and Priestley. (2009)). The role of market liquidity as a predictor
variable for government bonds has been studied more recently by Fontaine and
Garcia (2011), Pflueger and Viceira (2012) and Gomez (2013). They provide
empirical evidence for liquidity as a source of predictability for U.S. Treasury
bonds, U.S. Treasury Inflation-protected bonds (TIPS), or for both.

The question as to whether or not asset returns are predictable is of
significant importance for portfolio choice. In their seminal papers, Merton
(1969) and Samuelson (1969) show that if asset returns are independently and
identically distributed (IID) over time, then the optimal asset allocation is
constant over time. However, Kim and Omberg (1996), Brennan et al. (1997)
and Viceira and Campbell (1999) show that if asset returns are predictable,
then the optimal asset allocation depends on the investment horizon and the
predictive variables.

While some studies provide insight into the role of liquidity as a predictor
variable, few studies examine the effect of liquidity risk on optimal portfolio
allocation. Ghysels and Pereira (2008) provide empirical evidence that the
relevance of liquidity for stock portfolio choice depends on both the asset and
the investment horizon. Garleanu (2009) studies portfolio choice and pricing
in markets in which trading may take place with considerable delay, and shows
that the liquidity level has a strong impact on portfolio choice. This paper
focuses on examining how changes in liquidity risk premium influences optimal
portfolio allocations in U.S. government nominal and index-linked bonds.

Throughout this paper, I assume that the investor makes decisions in real
terms where the investment horizon is one-month, one-quarter and one-year.
I only consider a short-term investor in the empirical analysis. The reason for
this is related to the fact that for a buy-and-hold long-term investor, whose
investment horizon perfectly matches the maturity of the bond, TIPS offer full
protection against inflation if held until maturity.1 Similarly, an investor who
adopts a buy-and-hold strategy for TIPS mitigates risk arising from illiquidity,
1 TIPS are a useful hedge against inflation, but they do not guarantee a real rate of return.
This is because the mechanics of adjusting for inflation for TIPS limit the exactness
of the inflation adjustment and allow only approximate inflation hedges especially at
high inflation levels. In fact, for TIPS, the reference price index is the non-seasonally
adjusted CPI-U, and the indexation lag is three months. Therefore, TIPS operate with
an indexation lag of three months. In other words, it takes three months from the
incidence of price inflation (the month when a reference index reading is recorded) until
it is incorporated into the coupon payment of the inflation-linked bond. Consequently,
the indexation lag affects how well TIPS compensate for contemporaneous inflation, and
prevents TIPS from guaranteeing a specified real return.
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given that he/she does not face higher costs of buying or selling the bond
before it reaches maturity. However, TIPS are currently issued with only a
few specific maturities: 5-year, 10-year and 30-year, therefore the investment
horizon over which I consider investors who hold assets does not match the
maturity of any outstanding TIPS.2 Hence, I study a short-term investor who
maximizes real wealth but is not able to invest in a risk-less asset in real terms
(given that TIPS are a risky asset both in nominal and in real terms), and
also faces liquidity risk. Notice, however, that a short-term investor benefits
from the availability of TIPS in terms of a wider investment opportunity set
that allows an increase in the returns per unit of risk, investing even a small
fraction of his wealth in TIPS (Cartea et al. (2012)).

The investor’s problem is to choose optimal allocations to the risky asset
as a function of predictor variable: the TIPS liquidity premium. As risky
assets, I consider equally weighted bond portfolios on short-term bonds (1 to
10 years maturity); and on long-term bonds (11 to 20 years maturity), each
of them are computed for Treasury bonds and for TIPS. The existence of a
TIPS liquidity premium is well established. In fact, TIPS bonds have been
characterized by being less liquid than nominal Treasury bonds.3 TIPS’ lack
of liquidity compares with nominal Treasuries results in TIPS yields having
a liquidity premium relative to Treasuries.4 Since this liquidity premium is
unobservable, different alternative ways of proxing liquidity have been proposed
in literature. In particular, I test two market-based measures for the liquidity
differential between inflation-indexed bonds and nominal bonds proposed by
Christensen and Gillan (2011) and Gomez (2013). The first one is computed
as the spread between synthetic and cash break-even inflation rates, while the
second one corresponds to the asset swap spread on similar maturity inflation-
linked and Treasury bonds. Both measures allow us to identify the relative
liquidity premium between two comparable assets, which in this case arise
from the cost derived from TIPS liquidity disadvantage relative to Nominal
bonds.

The particular choice of these two measures for liquidity is motivated by the
fact that: i) even though they are highly correlated (which suggests that all of
them are capturing similar information about the liquidity differential between
2 U.S. Treasury inflation-protected securities were introduced in January 1997. TIPS bonds
have been offered in 5-, 10-, 20-, and 30-year denominations. However, TIPS that have
less than one year remaining to maturity are not easy to find in the secondary market,
given that they have extremely high transaction costs.

3 The existence of this liquidity premium in TIPS yields has been well documented in the
academic literature by Sack and Elsasser (2004), Shen (2006), Hordahl and Tristani (2010),
Campbell et al. (2009), Dudley et al. (2009), Christensen and Gillan (2011), Gurkaynak
et al. (2010), Pflueger and Viceira (2012), among others.

4 Liquidity risk premium is defined here as the total cost of all frictions to trade a relative
less liquid asset beyond those of the more liquid asset against which it is being compared
(Christensen and Gillan (2011)).
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nominal and TIPS yields), they are measured using information from different
markets, which would allow them to capture different aspects of the liquidity
premium, especially in times of financial distress where each market tends to be
driven by its specific dynamics, such as funding costs.5 Next, I am interested in
testing if the optimal portfolio choice depends on a particular choice to proxy
liquidity premium, ii) they are market-based measures of liquidity which is
straightforward to compute, and by construction they are also model-free.

Finally, I consider the portfolio policy of an investor who is able to invest in
only one risky asset, and I differentiate various portfolio allocation problems:
first, where the investor chooses between the portfolio of short-term or long-
term Treasury bonds and a risk-free asset; and second, where the investor
chooses between a portfolio of short-term or long-term TIPS and a risk-free
asset. I also study an investor with mean-variance (MV) and constant relative
risk aversion (CRRA), with different degrees of risk aversion, in order to test
the sensitivity of the optimal portfolio choice to the higher moments.

There are a series of ways in which this study contributes to the literature.
First, it incorporates financial information (liquidity premium) in an asset
allocation context, and shows how this can be of significance for both a
mean-variance and a CRRA investor. Second, it focuses on a bond portfolio
choice that is relatively unexplored in the literature, since the majority of the
studies on asset allocation examine stock-only portfolios. Brennan et al. (1997)
(who were the first to analyze portfolio choice in the presence of time-varying
expected returns), point out that the degree of the asset return predictability
has a significant effect on the composition of the optimal portfolio. Therefore,
the evidence in favor of bond return predictability (by means of variables such
as liquidity) imply that a bond portfolio setting provides a robust framework
to examine. Additionally, bonds-only portfolios are extremely important for
the fund management industry and for central banks, as well as for liquidity,
and inflation risk are highly relevant for insurance and the risk management of
pension funds. Third, I examine portfolio choice among multiple government
bonds with different maturities. More so, I consider both the U.S. Treasury
bonds and inflation-linked bonds in the investor’s asset menu.

I make use of an econometric framework based on a portfolio choice problem
of a single period investor, where the investor’s problem is set up as a statistical
decision problem, with asset allocations as parameters and the expected utility
as the objective. The allocations are estimated by direct maximization of
5 Theoretically, there exists a close relationship between bond break-evens and inflation
swaps rates. In essence, both measure the markets’ expectations of future inflation.
However, the most recent crisis showed that U.S. cash and swap markets can diverge
significantly, with each market driven by its specific dynamics such as funding costs. Asset
swapping activity should theoretically hold the two markets together, but the empirical
evidence, discussed by Gomez (2013), shows that such activity is not sufficient to offset
diverging forces in stressed market conditions.
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expected utility proposed by Brandt (1999). A number of key results emerge
from this analysis. First, the liquidity premium seems to be a significant
determinant of the portfolio allocation of U.S. government bonds. In fact,
conditional allocations in risky assets decrease as liquidity conditions worsen.
In particular, an increase in the liquidity differential between nominal and
TIPS bonds leads to lower optimal portfolio allocations for nominal Treasury
bonds, and also to lower optimal portfolio allocations in TIPS, but at different
levels of liquidity. Additionally, the effect of liquidity is a decreasing function of
investment horizons, in the sense that for the same degree of risk aversion the
investor reacts less abruptly to an increase in the liquidity premium when
he/she has a longer investment horizon. Furthermore, as the investment
horizon becomes longer, the smaller the optimal portfolio weight, and so, the
less is invested in the risky asset.

The above conclusions are not determined by the level of risk aversion or
the investors preferences. The relation between optimal portfolio weights and
the liquidity premium remains the same for different values of risk aversion, and
also across investor preferences. These characteristics mainly change the level
of the portfolio function, having a small impact on the shape of the function.
In addition, results do not depend on a particular choice of the maturity of
the liquidity premium (similar results are found when considering 10-year or
20-year liquidity premium), nor on a specific way to proxy liquidity (I have
similar results with both liquidity premium measures).

From the standpoint of practical advice to portfolio investors, a final
natural question to ask is whether or not the bond return predictability
translates into improved out-of-sample asset allocation and performance. To
answer this question, I compare the performance of the optimal portfolio
choices of two investors: one investor who makes portfolio allocations based on
the belief that bond returns are predictable by liquidity (conditional strategy);
and the other who believes that bond returns are independent and identically
distributed (i.i.d.), and ignores any evidence of bond return predictability
in making his/her portfolios allocation choices (unconditional strategy). I
conclude that the conditional strategy outperforms the unconditional strategy,
improving not only the in-sample, but the also out-of-sample asset allocation
and performance.

The rest of the paper is organized as follows. Section 2 defines the
conditional portfolio choice problem, provides a description of the liquidity
premium measures available in the literature and presents the non-parametric
estimation technique used. I describe the data and provide some basic
statistics in Section 3. Section 4 presents the empirical results for different
bond portfolios, different types of investors and different investment horizons.
Section 5 concludes.
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2 The conditional optimal portfolio problem

The traditional problem of optimal portfolio choice considers an investor which
maximizes the conditional expected utility of next period’s wealth under a
budget constraint. Merton (1969) provides the solution, where the investor
can trade continuously in a finite set of stocks and bank account. However,
given that the stocks and bonds differ in many ways, the theory of portfolio
management does not apply as it stands to bond portfolios (see Ekeland and
Taflin (2005) for a discussion of this point). For the bond market, Schroder
and Skiadas (1999), Ekeland and Taflin (2005), Ringer and Tehranchi (2006)
and Liu (2007) have studied this problem using a theoretical approach. In
particular, Ekeland and Taflin (2005) and Ringer and Tehranchi (2006) set up,
and solve the problem of managing a bond portfolio by optimizing (over all
self-financing trading strategies for a given initial capital), the expected utility
of the final wealth. Thus, optimal portfolio at time t is a linear combination of
self-financing instruments, each one with a fixed time to maturity. Under this
set up the value of the portfolio changes only because the bond prices change.
Price bonds behave like price stocks, that is, it depends only on the risk it
carries and not on time to maturity.

The impact of return predictability on optimal portfolio choice have also
been considered in literature. Initially, it was studied under the assumption of
no parameter or model uncertainty by Viceira and Campbell (1999), Balduzzi
and Lynch (1999), Wachter (2002), Munk et al. (2004). Subsequently, Barberis
(2000) incorporates parameter uncertainty, but does not allow for dynamic
learning. More recently, Brandt et al. (2005) consider learning about other
parameters of the return processes in addition to the predictive relation.

Various other papers investigate the effects of an aversion against ambiguity
about the return process on portfolio choice (Maenhoud (2006), Liu (2010), Liu
(2011), Chen et al. (2011) and Branger et al. (2013)). There is also a growing
literature on portfolio selection that incorporates return predictability with
transaction costs, started by Lynch and Balduzzi (2000), Brandt et al. (2004)
and recently by Lynch and Tan (2011), and Garleanu and Pedersen (2009).
Empirical studies also have been undertaken by Brandt (1999), Ait-Sahalia and
Brandt (2001), and Brandt and SantaClara (2006) consider different predictive
variables, while Ghysels and Pereira (2008) have the only paper that includes
liquidity as a predictor variable (except for stock portfolio allocation problem).

On the other hand, the impact of inflation on portfolio choice also has
also been considered in the literature. An initial extension of the Markowitz
problem was introduced in the 1970s by Biger (1975), Friend et al. (1976),
Lintner (1975) and Solnik (1978), among others. Intertemporal portfolio choice
problem under inflation risk was studied by Campbell and Viceira (2001) in
discrete time, and by and Brennan and Xia (2002) in continuous time. Both
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works tell us that a long-term, risk-averse investor prefers the indexed bond or a
perfect substitution of indexed bond in order to hedge against the inflation risk.
However, in these papers all relevant state variables are assumed observable and
the probability distributions of all processes are assumed known. Bensoussan
et al. (2009) and Chou et al. (2010) relax that restriction by assuming that the
expected inflation rate is unobservable to the investor.

More recently, motivated by the fact that all these papers disregard model
uncertainty (inflation model misspecification), Munk and Rubtsov (2012) solve
a stock-bond-cash portfolio choice problem for a risk- and ambiguity-averse
investor in a setting where the inflation rate and interest rates are stochastic
and the expected inflation rate is unobservable. Also, De Jong and Zhou (2013)
investigate the optimal portfolio and consumption policies for a finite horizon
investor in a life-cycle model with habit formation and inflation risk.

Most of the existing studies on portfolio choice (with or without inflation
risk), focus on stock-only portfolios (Viceira and Campbell (1999), Barberis
(2000), Wachter (2002)), or examine the stock-bond mix portfolio choice (Munk
et al. (2004)). Given the extensive literature for equity markets, it is surprising
to note that no effort has been undertaken to examine the influence of liquidity
in government bond portfolio choice. Filling this gap is one contribution of this
paper. To follow, I define the investor’s maximization problem, describe the
conditioning information, and finally, introduce the estimation technique.

2.1 Investor utility maximization

2.1.1 Portfolio choice without inflation

Ekeland and Taflin (2005) and Ringer and Tehranchi (2006) express the
solution of optimal portfolio choice as portfolios of self-financing trading
strategies which naturally include stocks and bonds. In particular, they fix
a utility function u and a planning horizon T > 0, and consider the functional
J(ϕ) = EP[u(Wϕ

T )] where Wϕ
T is the accumulated wealth at time T generated

by the self-financing trading strategy ϕ. The goal is to characterize the strategy
that maximizes J .

Following on from this literature, I consider the problem of optimal portfolio
choice when the traded instruments are a set of risky bonds and a risk-less
bond. In particular, and without loss of generality, I consider a bond market
where only zero-coupon bonds are available. Fixing a utility function u(Wt+1)
and a planning horizon T > 0, I consider an investor who maximizes the
conditional expected utility of next period’s wealth, subject to the budget
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constraint:

max
αt∈A(ϕ)

E[u(Wt+1) | Zt]

subject to: Wt+1 = Wt[Rf,t+1 + αt(Rb,t+1 −Rf,t+1)]
(1)

where Wt+1 is the accumulated wealth at time t + 1 generated by the self-
financing trading strategy ϕ (which belongs to the set of admissible self-
financing strategies denoted by A), αt represents the proportion of wealth
invested in a risky bond with return Rb,t+1 and the remaining proportion 1−αt
is invested in risk-free bond with return Rf,t+1. The expectation is conditional
on a state variable Zt. The investor can have three different horizons: one-
month, one-quarter or one-year (this represents the difference between t and
t+ 1).

The weight that maximizes the expected utility function is the solution to
the following Euler optimality condition

E
[
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α
| Zt
]

= 0. (2)

In particular, the solution of the investor’s problem is the mapping from
the state variable Zt to the portfolio weights

αt = α(Zt), (3)

and it denotes the portfolio choice of observing a signal Zt = z.

The relation between the portfolio policy and the predictability of
individual moments of the returns given the predictor Zt depends on the
specification of the utility function. I consider two types of investor preferences:
mean-variance (MV) and power-utility (CRRA) preferences. An investor with
mean-variance preferences maximizes

max
αt∈A(ϕ)

E[Wt+1 | Zt]−
γ

2
V[W 2

t+1 | Zt], (4)

where γ > 0 represents the coefficient of absolute risk aversion. The investor
portfolio policy when the choice includes a risk-free rate is proportional to the
conditional mean-variance ratio of the tangency portfolio

αtgt =
1

γWt

E[Rtgt+1 | Zt]
V[Rtgt+1]

,

where Rtgt+1 is the return of the tangency portfolio. The reason I consider
MV preferences is because it can be stated as a primitive, or can be derived
as a special case of expected utility theory. Also, under MV preferences,
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portfolio weights depend exclusively and analytically on the two first moments
of returns, which serve as benchmark case in this study.6

I also consider the most popular objective function in the portfolio choice
literature, which is an investor with CRRA or power utility. In this case, the
investor solves the following problem

max
αt∈A(ω)

E
[
W 1−γ
t+1

1−γ

]
if γ > 1

E [log(Wt+1)] if γ = 1
(5)

subject to the budget constraint in (1), and where γ > 0 now measures the
coefficient of relative risk aversion. As is well known, unlike mean-variance
preferences, CRRA does not permit a closed form solution to the investor’s
portfolio problem. However, I consider CRRA preferences to be able to test
whether or not an investor cares about higher order moments of the return
distribution.

2.1.2 Portfolio choice with inflation

In this section, I follow Cartea et al. (2012) who solve the optimal portfolio
choice problems for investors concerned with maximizing real wealth. Here, I
assume that investors make allocation decisions in real terms, and are worried
about the purchasing power of their terminal wealth, and do not suffer from
money illusion. As before, I consider the optimal investment allocation of
investors who are not worried about what may happen beyond the immediate
next period but rather, care about the purchasing power of their wealth.

To avoid exposure to inflation risk, investors can: (i) invest in a risk-less
asset in real terms; and/or (ii) invest in assets that covary with inflation.
However, in this empirical analysis I only consider investors who have a
maximum investment horizon of 1-year; they cannot find TIPS with this
maturity and thus they are not able to invest in a risk-less real asset.
Additionally, given that real interest rate changes affect TIPS returns, investors
consider TIPS as a risky asset in both nominal and real terms.

An investor with MV or CRRA preferences maximizes the same problem
in (4) and (5), respectively, but are now subject to the budget constraint

WR
t+1 = WR

t [Rf,t+1 + αt(Rb,t+1 −Rf,t+1)],

where WR
t+1 is now the terminal real wealth, and Rb,t+1 and Rf,t+1 are real

risky and risk-free bond returns, respectively, as already seen.7 In the absence
6 Although the limitations of mean-variance analysis are well established in portfolio theory,
its relative simplicity and easy intuition contributes to its continued use among investment
professionals, in theoretical and empirical studies.

7 In this case, the real risk-free bond returns is calculated as Rf,t+1 − πt+1, where πt+1 is
the log inflation rate.
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of a real risk-free asset investors face inflation risk and deal with this through
the covariances between the returns of risky assets and inflation. Securities
which are correlated with inflation help to hedge against inflation, reducing
the portfolio variance in real terms.

2.2 Liquidity measures

It is generally acknowledged that liquidity is important for asset pricing. At a
theoretical level, two main views (not mutually exclusive), have been advanced
to explain why liquidity should be priced by financial markets: illiquidity
(i) creates trading costs; and (ii) can itself create additional risk. The first
view holds that illiquid securities must provide investors with a higher than
expected return to compensate for their larger transaction costs, controlling
for fundamental risk. This view was first proposed and tested by Amihud and
Mendelson (1986) for stock-market data, and by Amihud and Mendelson (1991)
for fixed-income security markets. The second view suggests that liquidity is
priced not only because it creates trading costs, but also because it is itself
a source of risk, since it changes unpredictably over time, as developed by
Pastor and Stambaugh (2003). These two views have resulted in considerable
literature on the relation between returns and liquidity.

On the other hand, the existence of differences in market liquidity
conditions between nominal and inflation-indexed Treasury securities is well
known. Different practical approaches have been used to measure this liquidity
differential. In general, two approaches have been implemented: market-based
measures used by Christensen and Gillan (2011) and Gomez (2013); and a
regression procedure used by Pflueger and Viceira (2012).

Christensen and Gillan (2011) identify the liquidity component in TIPS
yields using information from the bond market and also from the inflation swap
market. An inflation swap is a bilateral contractual agreement. It requires one
party (the inflation payer), to make periodic floating-rate payments linked to
inflation, in exchange for predetermined fixed-rate payments from a second
party (the inflation receiver). The most common contract is the zero-coupon
inflation swap, which has the most basic structure with payments exchanged
only on maturity.

The rates observed, ISn,t, represent the fixed rate paid by the inflation
receiver, that is, the rate that fixed rate agents are willing to pay (receive) in
order to receive (pay) the cumulative rate of inflation during the life of the
swap. Hence the quoted rate can be also viewed as a break-even inflation rate
(BEI), which depends on expected inflation over the life of the swap. Thus, it is
possible to use the quoted rate to derive market-based measures of expectations
for inflation.

In theory, the inflation compensation implicit in the prices of nominal
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bonds relative to index-linked bonds should be the same as that found in
inflation swap rates. The two should be consistent due to arbitrage.8 Thus, in
a frictionless world this equality must hold

ISn,t = πen,t = BEIn,t,

where BEIn,t denotes the cash break-even inflation rate and πen,t is the
expected average inflation rate for the next n years.

However, in reality the cash BEI and inflation swap rates are not equal. As
occurs in the ILB market, the market for inflation swaps are less liquid than
the market for nominal Treasury bonds, such that the observed price of each
asset should contain a non-negative time-varying liquidity premium that biases
its yields upwards (Christensen and Gillan (2011)). That means that inflation
swap rates should be adjusted by liquidity risk. The observed inflation swap
rate (commonly referred as synthetic break-even rate) are given by

ÎSn,t = ISn,t + LISn,t,

where LISn,t is the liquidity premium included in the inflation swap rates.

Christensen and Gillan (2011) argue that the liquidity component in BEI
identify from the difference between observed BEI and inflation swap rate

∆n,t = ÎSn,t − B̂EIn,t = LISn,t + LILBn,t , (6)

They showed that this result hold under two assumptions: i) the market for
ILBs and inflation swaps are less liquid than the market for nominal Treasury
bonds; and ii) the nominal Treasury yields we observe are very close to the
unobservable nominal yields that would prevail in a frictionless world, that
means ŷNn,t = yNn,t. Under these assumptions, the difference between the two
rates is the sum of the liquidity premiums in TIPS and inflation swaps.

In a recent paper, Gomez (2013) measures the market liquidity premium
in TIPS by looking at how inflation-linked asset swaps on nominal bonds
corresponds to inflation-linked ones. The idea is that this asset swap spread
captures the relative financing cost, the special nature and the balance sheet
cost of TIPS over nominal Treasuries. These characteristics make some
securities easier to liquidate and more attractive to hold than others, so this
spread should be a good market-based measure of the market perception of
relative liquidity in a bond market.

An asset swap is a derivative transaction that results in a change in the
form of future cash flows generated by an asset. In the bond markets, asset
8 That is because the pay-offs of index-linked bonds can be replicated using inflation swap
contracts. Two portfolios with identical future pay-offs should have the same price via
arbitrage. Hence, with perfect markets we would expect perfect substitution between
break-even rates available in the inflation swap and bond markets
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swaps typically take fixed cash flows on a bond and exchanges them for Libor
(i.e. floating rate payments) plus asset swap spread (ASW), which can be
positive or negative. Thus, an asset swap is equivalent to buying a bond and
entering into an interest rate swap with maturity matching the bond.9

The z-asw spread between a nominal and inflation-linked asset swaps, is
given by:

Lz-aswn,t = z-aswILBn,t − z-aswNn,t = LILBn,t . (7)

This spread should be non-negative, Lz-aswn,t ≥ 0, and equal to the liquidity
premium in the inflation linked bond.

Pflueger and Viceira (2012) estimate the TIPS liquidity premium explicitly
using a model. They regress the break-even inflation rate on a set of three
measures of liquidity in bond markets: the nominal off-the-run spread, relative
TIPS transaction volumes and the difference between TIPS asset-swap-spreads
and nominal U.S. Treasury asset-swap spreads. They also control for inflation
expectation using the survey of long-term inflation expectations (πSPF ) and
the Chicago Fed National Activity Index (CFNAI). They estimate

B̂EIn,t − πSPF = a1 + a2Xt + a3CFNAIt + εt,

where Xt is a vector containing our three liquidity proxies. They obtain the
TIPS liquidity premium as the negative of the variation in B̂EIn,t − πSPF

explained by the liquidity variables, while controlling for the CFNAI as a proxy
of short-term inflation expectations. Hence, the estimated relative liquidity
premium in TIPS yields equals

L̂PVn,t = −â2Xt. (8)

An increase in L̂PVn,t reflects a reduction in the liquidity of TIPS relative to
nominal Treasury bonds. Given that their liquidity estimate most likely reflects
liquidity fluctuations in both nominal bonds and in TIPS, they assume that
the liquidity premium L̂PVn,t is entirely attributable to time-varying liquidity in
TIPS rather than in nominal bonds.

The measures described above allow us to identify the relative liquidity
premium between two comparable assets, in this case the cost derived from
TIPS liquidity disadvantage relative to nominal bonds.10 As a result, the
9 As for a nominal asset swap, the proceeds of a bond are exchanged against a floating
rate interest payment, however the proceeds are not fixed but inflation-linked. Thus, a
dealer might buy an indexed bond via a repo, provide an inflation-indexed cash flow to the
market via an inflation swap and hedge its position with a standard interest rate swap.

10Absolute liquidity premium is defined as the price difference between the observed and
the unobservable frictionless market outcome of a given asset. However, we work with the
relative concept since it is extremely difficult to identify the unobservable frictionless price
of an asset directly.
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liquidity measures described above meet the same definition of liquidity
premium. Specifically, liquidity refers to the total cost of all frictions (wider
bid-ask spreads, lower trading volume, etc.) to trade off the less liquid asset
beyond that of the more liquid asset against which it is being compared.
However, I will use the two model-independent measures of liquidity premium
to examine whether or not the liquidity differential between inflation-indexed
bonds and nominal bonds (liquidity premium), represented by Zt, constitute
relevant conditioning information in the portfolio choice problem.

The reason for that particular choice is twofold. I use the market-based
measures of liquidity because they are model-free and can be readily calculated
using daily data, while Pflueger and Viceira (2012) liquidity premium is model-
dependent by construction and it is only available on a monthly frequency.11

Second, there exists a close relationship between bond break-evens and inflation
swap rates, because theoretically, both rates measure the markets’ expectations
of future inflation. However, the most recent crisis showed that U.S. cash
and swap markets can diverge significantly, with each market driven by its
specific dynamics. Asset swapping activity should theoretically hold the
two markets together, but the empirical evidence suggests that such activity
was not sufficient to offset diverging forces in stressed market conditions
(see Gomez (2013) for a further discussion). Consequently, even though
the Christensen and Gillan (2011) and Gomez (2013) measures are highly
correlated (which suggests that all of them are capturing similar information
about the liquidity differential between nominal and TIPS yields), they are
measured using information from different markets. Thus, it would make them
capture different aspects of liquidity premium, especially in times of financial
distress where each market tends to be driven by its specific dynamics, such
as funding costs.

2.3 Non-parametric estimation

I use the methodology proposed by Brandt (1999) and Ait-Sahalia and
Brandt (2001). They apply a standard generalized method of moments
(GMM) technique to the conditional Euler equation that characterizes the
investor’s portfolio choice problem. In particular, it consists of replacing the
conditional expectation with sample analogues, computed only with returns
realized in a given state of nature where the forecasting variable level is
Zt = z̄. Brandt (1999) suggests estimating the conditional expectation with a
standard non-parametric regression. Ait-Sahalia and Brandt (2001) suggest a
semiparametric approach to address the issue of which predictors are important
for the portfolio choice when a large number of them are available.
11Pflueger and Viceira (2012) estimated liquidity premium from January 1999 to September
2010, only for 10-year TIPS and in a monthly frequency. Consequently, it does not have
enough sample points to be considered in this study (74 observations).
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Let a neighborhood of Z be Z ± h for some bandwidth h > 0. When
the investor is characterized by the power utility, a simple non-parametric
estimator of the conditional Euler equation is given by the Nadaraya-Watson
estimator, where the moment condition is given by:

Ê
[
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α
| Zt = z̄

]
=

1

Th

ΣT
t=1

(
∂u(Wt+1)
∂Wt+1

∂Wt+1

∂α

)
k(Zt, z̄, h)

ΣT
t+1k(Zt, z̄, h)

= 0,

(9)
where k(Zt, z̄, h) is the kernel function which is assumed to be Gaussian. I
apply exactly identified GMM to equation (2) to obtain α̂(Z) which is a
consistent estimate for the unknown optimal portfolio choice α(Z) (See Ait-
Sahalia and Brandt (2001) for asymptotic properties of this estimators). The
conventional solution to optimize the classical trade-off between variance and
bias is to choose a bandwidth of the form: h = λσzT

−1/K+4, where λ is
a constant, K is the number of predictor variables and σz is the standard
deviation of the predictor Z (see Hardle and Marron (1985)).

Finally, the optimal unconditional portfolio weight is compute by applying
a standard GMM procedure to the unconditional Euler equation. In this case
the moment condition is:

Ê
[
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α

]
=

1

T
ΣT
t=1

(
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α

)
= 0, (10)

which yields the same results that directly compute weights from equation (3).

3 The Data and basic statistics

I am interested in the analysis of the empirical time-series relationship between
optimal bond portfolio allocations and alternative measures of liquidity. To
that end, I calculate monthly, quarterly and annual holding period returns
from daily observations of zero-coupon nominal and real Treasury bond yields
constructed by Gurkaynak et al. (2007) and Gurkaynak et al. (2010) for
observed bond yields, respectively, available through the Federal Reserve web
site. This data set contains constant maturity yields for maturities of 2 to 20
years. I construct equally weighted bond portfolios on short-term bonds (1 to
10 years maturity) and on long-term bonds (11 to 20 years maturity), each of
them computed for Treasury bonds and for TIPS, ending up with four risky
assets presented in Figure 1. The sample period is from January 2, 2004 to
December 31, 2012.

For the same period, I also collect information on one-year Treasury bills
from the Federal Reserve Board statistical releases. Following Ait-Sahalia and
Brandt (2001) and Ghysels and Pereira (2008) I assume Treasury bill is risky-
free, and I fix the risk-free rate at its historical average. They argue that the

14



Figure 1: Yearly return portfolios
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Equally-weighted U.S. Government bond return portfolios calculated using daily data from January 2, 2004
to December 30, 2011.

constant risk-free rate assumption guarantees that any difference in the optimal
portfolio functions across frequencies is solely due to the relation between
returns and liquidity. In summary, the asset universe consists of the short-term
Treasury bonds (weight αNS), the long-term Treasury bonds (weight αNL), the
short-term TIPS (weight αRS), the long-term Treasury bonds (weight αRL) and
the risk-free assets (weight αrf ).

For liquidity, I use two-market based measures available on a daily
frequency. The first measure is the liquidity measure proposed by Christensen
and Gillan (2011). The data used to construct the liquidity premium proposed
by Christensen and Gillan (2011) corresponds to daily estimates of zero-coupon
nominal and real Treasury bond yields constructed by Gurkaynak et al. (2007)
and Gurkaynak et al. (2010) for observed bond yields. For zero-coupon inflation
swap rates, I use U.S. daily quotes from Barclays Live, which I have converted
into continuously compounded rates to make them comparable to the other
interest rates. I compute their liquidity measure, denoted by ∆n,t, for 10- and
20- years to maturity from January 2004 to December 2011.

The second measure is the asset swap liquidity premium used by Gomez
(2013). I obtain daily nominal and TIPS z-spread asset swaps data from
Barclays Live, starting in November 2006 until December 2011 for 10-years
maturity (short-term portfolios liquidity) and 20-years maturity (long-term
portfolios liquidity).12 The residual spread between different TIPS and nominal
12Asset swaps on bonds with less than 12 months to maturity are dropped from the
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z-spread asset swaps with the same maturity was calculated. Next, the
average spread across different assets for each maturity was computed, and
this corresponds to my liquidity premium measure, Lz-aswn,t for n = 10, 20 years
maturity.

Figure 2: Liquidity measures
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The z-asw liquidity corresponds to the residual spread between TIPS and nominal bonds asset swaps
calculated using daily data from November 1, 2006 to December 30, 2011. The maximum range liquidity
corresponds to the difference between cash and synthetic break-even inflation rates proposed by Christensen
and Gillan (2011) calculated using daily data from January 1, 2004 to December 30, 2012.

In Figure 2, I plot the evolution of liquidity premium measures Lz-aswn,t

and ∆n,t for short-term portfolios and long-term portfolios at a daily
frequency. One can see that the values for both measures are strictly positive.
Furthermore, Lz-aswn,t liquidity premiums tend to be downward sloping with
maturity, indicating that the shorter-term liquidity premium is greater than
the longer-term, especially during the crisis time. However, it seems not to be
the case when liquidity is measured using the Christensen and Gillan (2011)
measure. Additionally, the magnitude of the liquidity premium varies across
measures. In fact, over the whole sample the mean short-term liquidity has
been about 49 basis points for Lz-aswn,t compared with 29 basic points for ∆n,t.
What is clear in both measures is that the liquidity premium grew substantially
during the financial crises of 2008 and 2009. In fact, liquidity shows a peak
in late 2008 during the financial crisis. In summary, although they are very
similar and seem to be consistent (in the sense that they are able to capture the
same events observed in the considered sample period), they show differences

estimation of the liquidity, because the effect of the indexation lag makes the prices of
these securities erratic as was noted by Gurkaynak et al. (2010). All other asset swaps are
included in the calculation.
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in the magnitude of statistics calculated from the two liquidity measures. For
this reason, I am interested in testing whether or not the optimal portfolio
choice depends on a particular way to measure liquidity premium.

Table 1 shows descriptive statistics of the liquidity predictors and holding
period government bond portfolio returns, for the three investment horizons:
one-month, one-quarter and one-year. The first lines in each panel show the
mean, standard deviation, skewness and kurtosis for each liquidity measure
and returns. By construction, and to facilitate the interpretation of the results,
liquidity measures have a mean zero and standard-deviation equal to one (i.e.
they have been standardized). The correlation coefficients between liquidity
measures are more than 0.90. This suggests that all measures are capturing
similar variations in the market bond yields. Also, there is evidence of fat tails
in returns, especially at the shorter investment horizon. This tail risk suggests
that the distribution is not normal, but skewed, and has fatter tails. The
fatter tails increase the probability that an investment will move beyond three
standard deviations. Nominal returns are negatively correlated with liquidity
while TIPS returns are positively correlated. This means that as liquidity
conditions worsen (higher liquidity premium), TIPS returns rise in order to
compensate for the higher risk in bad times.

The following lines show the autocorrelation coefficients for different lags,
which do not suggest persistence in most of the variables, especially at any
frequency. The last line shows the p-value for the Dickey and Fuller test.
The p-value for the Dickey and Fuller tests suggest the rejection of the null of
a unit root for both short-term and long-term returns, and Christensen and
Gillan (2011) 10-years liquidity. However, Lz-aswn,t seems not to be stationary.
Given that the non-parametric approach requires stationary data, I would need
transform each of those variables in order to make them a stationary series.
However, it is not clear in Figure 2 that liquidity is not stationary. First, they
are not moving along a decreasing or increasing time trend, and second, there
are upward peaks related to the financial crisis, but before and after that they
seems stationary. Consequently, I decided to work with the original series.

4 Empirical results

4.1 Unconditional portfolio weights

The goal in this section is to characterize the unconditional portfolio choice
which serves as a benchmark for the conditional problem. Table 2 presents
estimates of unconditional portfolio choices of investors with MV and CRRA
preferences with different risk aversion degrees of γ = 2, 5, 10 and 20, and
for three investment horizons. The entries in each column correspond to
a portfolio choice between Treasury bills (assumed as risk-free) and one of
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Table 1: Descriptive Statistics for the portfolio measures of liquidity and bond
returns

Short-term Long-term
∆10,t Lz-asw10,t RNt+1 RTIPSt+1 ∆20,t Lz-asw20,t RNt+1 RTIPSt+1

Panel A: Monthly frequency
Mean 0.00 0.00 1.04 1.02 0.00 0.00 1.06 1.03
Stdev 1.00 1.00 0.02 0.02 1.00 1.00 0.04 0.03
Skewness 2.58 1.98 0.03 -0.34 1.91 2.27 0.49 0.10
Kurtosis 11.15 6.33 3.70 6.30 8.36 7.97 5.60 5.91
Percentiles
5% -0.95 -0.85 1.01 0.99 -1.17 -0.86 0.99 0.98
50% -0.19 -0.31 1.05 1.02 -0.18 -0.32 1.06 1.03
95% 2.15 2.54 1.07 1.05 2.06 2.75 1.11 1.07
Cross correlations
∆n,t 1.00 1.00
Lz-aswn,t 0.91 1.00 0.93 1.00
RNt+1 0.05 0.07 1.00 -0.13 -0.11 1.00
RTIPSt+1 0.33 0.28 0.46 1.00 0.18 0.15 0.59 1.00
Auto correlations
1-day 0.99 1.00 0.95 0.96 0.99 0.99 0.95 0.94
2-day 0.98 0.99 0.91 0.92 0.98 0.98 0.90 0.89
5-day 0.95 0.98 0.80 0.78 0.95 0.96 0.77 0.72
22-day 0.76 0.89 0.07 0.06 0.77 0.81 -0.06 -0.11
Unit root test
DF p-value 0.02 0.53 0.01 0.01 0.14 0.36 0.01 0.01

Panel B: Quarterly frequency
Mean 0.00 0.00 1.05 1.02 0.00 0.00 1.06 1.03
Stdev 1.00 1.00 0.03 0.03 1.00 1.00 0.07 0.05
Skewness 2.58 1.98 0.04 -0.55 1.91 2.27 0.28 -0.26
Kurtosis 11.15 6.33 2.80 6.78 8.36 7.97 3.32 4.27
Percentiles
5% -0.95 -0.85 1.00 0.98 -1.17 -0.86 0.95 0.95
50% -0.19 -0.31 1.04 1.02 -0.18 -0.32 1.06 1.04
95% 2.15 2.54 1.09 1.07 2.06 2.75 1.17 1.11
Cross correlations
∆n,t 1.00 1.00
Lz-aswn,t 0.91 1.00 0.93 1.00
RNt+1 -0.14 -0.12 1.00 -0.23 -0.30 1.00
RTIPSt+1 0.37 0.31 0.28 1.00 0.23 0.16 0.59 1.00
Auto correlations
1-day 0.99 1.00 0.98 0.99 0.99 0.99 0.98 0.98
2-day 0.98 0.99 0.96 0.97 0.98 0.98 0.96 0.95
5-day 0.95 0.98 0.92 0.93 0.95 0.96 0.91 0.89
22-day 0.90 0.96 0.86 0.86 0.90 0.93 0.85 0.81
Unit root test
DF p-value 0.02 0.53 0.01 0.01 0.14 0.36 0.01 0.01

the four different equally-weighted portfolio bonds: short-term nominal bonds
(NS), long-term nominal bonds (NL), short-term TIPS (RS) or long-term TIPS
(RL). That they do not impose short-sell constraints suggests a less realistic
environment, mainly because the Markowitz portfolio tends to have very large
quantities of individual assets (sometimes unreasonably so), I do not impose
this restriction to make my results comparable with previous papers.
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Continuation: Descriptive Statistics

Short-term Long-term
∆10,t Lz-asw10,t RNt+1 RTIPSt+1 ∆20,t Lz-asw20,t RNt+1 RTIPSt+1

Panel A: Annual frequency
Mean 0.00 0.00 1.06 1.04 0.00 0.00 1.10 1.06
Stdev 1.00 1.00 0.04 0.05 1.00 1.00 0.09 0.08
Skewness 2.58 1.98 -0.14 0.02 1.91 2.27 0.16 0.06
Kurtosis 11.15 6.33 2.33 3.06 8.36 7.97 3.70 2.76
Percentiles
5% -0.95 -0.85 0.99 0.96 -1.17 -0.86 0.94 0.93
50% -0.19 -0.31 1.06 1.04 -0.18 -0.32 1.09 1.07
95% 2.15 2.54 1.12 1.11 2.06 2.75 1.29 1.21
Cross correlations
∆n,t 1.00 1.00
Lz-aswn,t 0.91 1.00 0.93 1.00
RNt+1 -0.50 -0.53 1.00 -0.60 -0.62 1.00
RTIPSt+1 0.36 0.30 -0.04 1.00 0.00 0.03 0.46 1.00
Auto correlations
1-day 0.99 1.00 0.99 1.00 0.99 0.99 0.99 0.99
2-day 0.98 0.99 0.98 0.99 0.98 0.98 0.98 0.98
5-day 0.95 0.98 0.96 0.97 0.95 0.96 0.95 0.95
22-day 0.76 0.89 0.83 0.86 0.77 0.81 0.78 0.82
Unit root test
DF p-value 0.02 0.53 0.23 0.09 0.14 0.36 0.05 0.02

The z-asw liquidity premium corresponds to the residual spread between TIPS and nominal bonds asset
swaps calculated using nominal and TIPS z-spread asset swaps rates. The other liquidity measure
corresponds to the TIPS Liquidity proposed by Christensen and Gillan (2011). U.S. daily data from
January 1, 2004 to December 30 2012 in basis points.

Several well-known features of optimal portfolio choice emerge. Consider
the mean-variance portfolio choice weights. First, risk aversion affects how
much wealth the investor allocates to risky securities instead of to the risk-
free Treasury bill. The more risk-averse the investor, the less they will invest
in the risky bond, so that long positions in risky bonds goes down with a
higher degree of risk aversion. Second, given that this investor is forming his
portfolio using only bonds and the risk-free Treasury bill, he/she will not want
to short-sell the risky asset but rather will want to buy it on the margin (i.e.
α > 1). That means investors borrow money at risk-free rates and go long in
risky bonds. For instance, an investor with an annual investment horizon and
γ = 20 borrows 39% of wealth at the risk-free rate to invest a total of 139%
in short-term nominal bonds portfolios. Finally, we see less large quantities of
short-sales (1 − α) or, in some cases, no short-sales for the risk-free Treasury
bill, for the same degree of risk aversion as the investment horizon increases.
For example, an investor with γ = 20 goes short in the risk-free bond at the
monthly frequency but goes long in both long-term nominal bonds and the
risk-free bond at longer investment horizons. The same situation occurs with
long-term bonds with respect to short-term ones in the sense that we see less
large quantities for a portfolio of long-term vs short-term bonds. This indicates
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that a smaller portion of the portfolio is devoted to risky assets as investment
horizons increase or when long-run assets are available.

Results for CRRA preferences are very similar to those for MV. In theory,
what differentiates a Mean-variance investor from a CRRA investor is that
the latter has a preference for higher order moments and not only for the
expected return and its variance, thus their risky position depends on relative
risk aversion. However, empirical results in Table 2, show that investors seem
not to be primarily affected in their decisions by the first two return moments.
So, the effect of higher order moments of CRRA investors seem not to be strong
enough, especially for TIPS. The biggest holding difference is for short-term
nominal bonds at the monthly frequency, where CRRA investors with different
levels of risk aversion tend to hold larger quantities.

There are important differences in the optimal portfolio weights between
short-term and long-term nominal bonds with both types of preferences. In
fact, equally risk-averse investors tend to hold bigger positions on short-term
bonds relative to long-term ones, i.e. the short-term bond weight typically
exceeds the long-term weight for the same kind of bond. However, these
differences become smaller when the investment horizon become longer. Bonds
with a longer maturity will usually pay a higher interest rate than shorter-
term bonds. However, long-term bonds have greater duration than short-term
bonds, so interest rate changes will have a greater effect on long-term bonds
than on short-term bonds. As a result, investors are more conservative holding
smaller positions in long-term bonds relative to short-term bonds, given that
they would offer greater stability and lower risk.

Investors also hold bigger positions in nominal bonds relative to TIPS
bonds. These differences could be attributed, at least in the case of CRRA
investor, to the negative skewness in short-term TIPS bond returns for monthly
and quarterly frequency, as Table 1 shows. Investors prefer positive skewness,
because it implies a low probability of obtaining a large negative return. Then,
investors tend to the extreme portfolios (Sharpe ratio driven, skewness driven
or kurtosis driven) and avoid being stuck in the middle.

4.2 Conditional portfolio weights

4.2.1 Non-parametric optimal portfolio function

In this section I present the optimal portfolio weights as function of the liquidity
differential between inflation-indexed bonds and nominal bonds (liquidity
premium), represented by Zt. I apply the utility maximization framework
presented above with respect to Zt. For each kernel grid point,13 I optimize
13 I define fifteen not evenly spaced realizations of the liquidity ranging from its mean minus
one standard deviation to its means plus three standard deviations, which correspond to
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the portfolio weight by maximizing the representative agent’s marginal utility
in that state using a GMM inference technique. The portfolio weights that
follow from the optimization of the expected utility under MV and CRRA
preferences are presented in this section.

Table 3 shows estimates of the optimal conditional portfolio choice of
investors (Weight) and their corresponding standard errors (Std) obtained
by applying the Politis and Romano (1994) bootstrap procedure which is
described in Appendix A. I use this stationary bootstrap procedure to
preserve autocorrelation properties of the data in the bootstrap samples.14

The standard errors are presented only in order to assess the precision of the
non-parametric method used. Each panel shows a different investment horizon
(monthly, quarterly and annual), and they present the portfolio allocation
problems considered before: two, where the investor chooses between the
portfolio of short-term or long-term nominal Treasury bonds and a risk-free
asset, and another two where the investor chooses between a portfolio of short-
term or long-term TIPS and a risk-free asset, with each of them considering a
MV and a CRRA investor.

Figures 3 to 6 are the companion graphs to Table 3. Each figure shows
the optimal portfolio weight as a function of liquidity α(Zt) represented by
the bold line. Additionally, in each figure the dotted horizontal line represents
the optimal unconditional allocation. The bars in the background represent
the histogram of liquidity premium (scaled to add up to 30). The left column
contains the optimal fraction of wealth allocated to the respective equally-
weighted U.S. nominal bond portfolio, and the right column to the equally-
weighted TIPS bond portfolio. Finally, in the first row, both the investment
horizon and the rebalancing frequency are one-month, in the second row, one-
quarter, and in the third row, one-year.

Results presented in Table 3 and in Figures 3 to 6 correspond to the case
when the coefficient of relative risk aversion is equal to γ = 20. The results for
the other degrees of risk aversion considered in the unconditional case are not
presented here in order to save space. They are available upon request.

the interior 95% of the empirical distribution of the liquidity premium. Alternatively, I also
define fifteen not evenly spaced realizations of the liquidity ranging between its minimum
and maximum value, however results are broadly the same with both grids.

14This method is a variation of the standard block bootstrap that manages to create
bootstrap series that are strictly stationary which accounts for the autocorrelation in the
data.
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Figure 3: Optimal portfolio weights as a function of 10-year liquidity
premium (Mean-Variance investor)
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In each panel the dotted horizontal line represents the optimal unconditional allocation. The bars in the
background represent the histogram (scaled to add up to 30) of liquidity premium. The bold line represents
the optimal fraction of wealth allocated to the respective equally-weighted U.S. bond return portfolios as
a function of liquidity premium calculated using daily data from January 2, 2004 to December 30, 2012.
In the first row, both the investment horizon and the rebalancing frequency are one-month; in the second
row, one-quarter; and in the third, one-year.
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Figure 4: Optimal portfolio weights as a function of 10-year liquidity
premium (CRRA investor)
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In each panel the dotted horizontal line represents the optimal unconditional allocation. The bars in the
background represent the histogram (scaled to add up to 30) of liquidity premium. The bold line represents
the optimal fraction of wealth allocated to the respective equally-weighted U.S. bond return portfolios as
a function of liquidity premium calculated using daily data from January 2, 2004 to December 30, 2012.
In the first row, both the investment horizon and the rebalancing frequency are one-month; in the second
row, one-quarter; and in the third, one-year.
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Figure 5: Optimal portfolio weights as a function of 10-year liquidity
premium (Mean-variance investor)
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In each panel the dotted horizontal line represents the optimal unconditional allocation. The bars in the
background represent the histogram (scaled to add up to 30) of liquidity premium. The bold line represents
the optimal fraction of wealth allocated to the respective equally-weighted U.S. bond return portfolios as
a function of liquidity premium calculated using daily data from January 2, 2004 to December 30, 2012.
In the first row, both the investment horizon and the rebalancing frequency are one-month; in the second
row, one-quarter; and in the third, one-year.
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Figure 6: Optimal portfolio weights as a function of 10-year liquidity
premium (CRRA investor)
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In each panel the dotted horizontal line represents the optimal unconditional allocation. The bars in the
background represent the histogram (scaled to add up to 30) of liquidity premium. The bold line represents
the optimal fraction of wealth allocated to the respective equally-weigthed U.S. bond return portfolios as
a function of liquidity premium calculated using daily data from January 2, 2004 to December 30, 2012.
In the first row, both the investment horizon and the rebalancing frequency are one-month; in the second
row, one-quarter; and in the third, one-year.
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A number of results emerge from this analysis. First, the liquidity premium
seems to be a significant determinant of the portfolio allocation to U.S.
government bonds. For instance, for a MV investor and at the monthly horizon,
liquidity is a strong determinant of the allocation to short-term and long-term
nominal bonds, with the optimal weight ranging from 9.41 at Liquidity= (-1)
to 2.31 at Liquidity=5, as Table 3 shows. This indicates that an increase in
the liquidity premium (i.e., liquidity conditions worsen) is accompanied by a
strong decrease in the optimal allocation in short-term nominal bonds.

I have a similar result for the long-term nominal bonds with weights ranging
from 2.05 to 0.27. Furthermore, liquidity also seems to be an important
determinant of the allocation to TIPS. In this case, an increase in liquidity
premium produces a decrease in the optimal allocation to both short-term,
and long-term TIPS bonds. However, the effect is less strong with weights
ranging from 3.80 to 3.16 for short-term, and from 1.31 to 0.65 for long-term
for liquidity ranging between -1 and 5, respectively.

At quarterly and annual frequencies, optimal allocation still responds to
changes in liquidity but mainly at high levels of liquidity premium. What we
see is that the conditional weight is very close to the unconditional weight
for low levels of liquidity (i.e. liquidity= -1 to 2), however optimal allocation
starts to respond to changes in the liquidity when market liquidity conditions
worsen (i.e. liquidity > 2). Interestingly, the investor tends to substitute cash
for nominal bonds, and TIPS bonds for cash when the liquidity rises above its
mean plus about 4 standard deviations, as Figures 3 and 5 show.

Second, conditional allocations in risky assets decrease as liquidity
conditions worsen. In particular, an increase in the liquidity differential
between nominal and TIPS bonds lead to: lower optimal portfolio allocations
on nominal Treasury bonds, and also lower optimal portfolio allocations in
TIPS, but at different levels of liquidity. When the liquidity premium is low
(i.e. the liquidity differential between nominal and TIPS bonds is small), we
see that the optimal allocation to either nominal or TIPS bonds is mostly
unresponsive to liquidity premium, and it is very close to unconditional
allocation. This occurs in the negative range of liquidity and also in the center
of the distribution.

When the liquidity premium is high (i.e. in presence of big liquidity
differentials between nominal and TIPS bonds), portfolio allocation on both
nominal bonds and TIPS bonds decreases. However, this occurs at different
levels of liquidity. In particular, the investor starts to decrease their position
in nominal bonds at liquidity=2, but when there is insufficient liquidity, the
investor holds a larger position in nominal bonds. On the other hand, portfolio
allocation on TIPS bonds behaves in the reverse direction. That is, the investor
only decreases asset allocation to TIPS in the upper positive part of liquidity
(i.e. when the liquidity premium is very high), while between liquidity=2 and
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liquidity=4 TIPS bonds allocations increases, being above the unconditional
value. Thus, in general, portfolio allocation for each type of bonds (nominal
and TIPS) moves in cycles and each of them has its own cycle. Typically, when
one type of bond is performing well, the other may not be performing as well
in terms of liquidity, and the allocation rule reflects this situation.

Third, I find in general that the shape of the optimal portfolio policy
functions of mean-variance and CRRA investors, with the same degree of risk
aversion, are similar even though they have different levels (see Figure B.1 in
the Appendix B). This suggest that investors seems to be primarily affected
in their decisions by the first two return moments. Thus, the effect of higher
order moments of CRRA investors exist but it seems not to be strong enough.
However, this is not true at the monthly frequency. In this case, portfolio
policies differ substantially which can be attributed to time variation in the
higher order moments of the return distribution. This result is not induced
by the choice of the kernel bandwidth, given that I explicitly control for it by
constraining the kernel to be the same for the mean-variance and the CRRA
preferences.15

Fourth, the effect of liquidity is a decreasing function of the investment
horizon. For a given degree of risk aversion, the size of the optimal
portfolio weight differs considerably across investment horizons. I find that as
investment horizons became longer, the smaller the optimal portfolio weight,
and the less that is invested in the risky asset. In particular, for the same degree
of risk aversion investors react less abruptly to an increase in the liquidity
premium when the investment horizon is one-year, than when the investment
horizon is one-month.

For instance, we can see from Table 3 that when liquidity is equal to its
mean (Zt = 0) a MV investor with γ = 20 reduces the cash holdings from 2.02
to 0.62 when the investment horizon increases from one-month to one-year.
This means that the investor borrows 102% of wealth at the risk-free rate
to invest a total of 202% in short-term nominal bonds when the investment
horizon is one-month. However, when the investment horizon becomes larger,
the investor takes a long position in both assets holding 62% of their wealth in
15Non-parametric methods are typically indexed by a bandwidth or tuning parameter
which controls the degree of complexity. The choice of bandwidth is often critical to
implementation. In this application, the bandwidth is given by: h = λσzT

−1/K+4, where
K = 1 which is the dimension of Z (I am considering only one predictor variable which is
liquidity), σ(Z) is the standard deviation of the predictor variable, T = 2086 is the sample
size and λ is a constant. For a big enough value of λ, I obtain a flat portfolio weight and
small λ produce a very noise portfolio weight function. I consider values ranging from 9
to 3 for λ. These values guarantee bigger weight to an observation located at the mean
of liquidity variable (which is zero), smaller weights to observations located one standard
deviation away from the mean (Zt = ±1), and even smaller weights to observations located
two standard deviation away from the mean, etc. The results presented in this section
correspond to λ = 6.

29



short-term nominal bonds and 38% in cash. The same occurs when I consider
a CRRA investor. For example, considering the same case, but for long-term
TIPS bonds, a CRRA investor reduces their bonds positions from 98% to 32%,
as Table 3 shows.

Fifth, different degrees of risk aversion mainly change the level of the
portfolio function but have little impact on the shape of this function, as
is shown in Figure 7. In this figure, I only plot the portfolio policies for the
long-term nominal (left column) and TIPS bonds (right column) for a one-year
investment horizon. The first row in the figure corresponds to a mean-variance
investor, and the second row to a CRRA investor. Finally, in each panel bold
black lines represent an investor with γ = 5, the bold grey line with γ = 10 and
the dotted line with γ = 20. Looking at Figure 7, we see that the more risk-
averse the investor becomes, the smaller the optimal portfolio weight, so the
less that is invested in the risky asset. Furthermore, more risk-averse investors
react less abruptly to an increase in the liquidity premium.

To summarize, and in general, results consistently show that the optimal
allocation to short-term or long-term bonds is mostly unresponsive to changes
in liquidity conditions at low levels (i.e. at liquidity= -1 to 4). However once
liquidity reaches certain levels (liquidity > 4), which indicates that market
liquidity conditions have worsened, then the investor starts to respond by
decreasing the positions in TIPS and increasing the position in nominal bonds.

Additionally, the above conclusion is not determined by the level of risk
aversion, the investment horizon or the investor preferences. The relation
between optimal portfolio weights and liquidity premium remains the same
for different values of risk-aversion, different investment horizons and also
across investors’ preferences. The characteristics mainly change the level of
the portfolio function that have a small impact on the function shape, except
for the monthly frequency.

4.2.2 Do weights really respond to changes in liquidity?

The main question of this paper is whether or not the weights respond to
changes in liquidity. To test whether or not a portfolio weight is statistically
different from zero is pointless in this context, simply because it does not
provide an answer for the question asked above. What I do next, following
Ghysels and Pereira (2008), is to statistically test this question by using the
following approximation:

H0 :
∂α(Z)

∂Z
|Z=Z̄

∼=
α(Z̄ + 0.1)− α(Z̄ − 0.1)

0.2
= 0 (11)

where the first derivative of α(Z) is approximated by a finite difference which
allows me to compute the slope of the optimal portfolio weight function at
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Figure 7: Optimal portfolio weights as a function of 10-year liquidity
premium (Mean-variance and CRRA investor with different values for γ)
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The bars in the background represent the histogram (scaled to add up to 30) of liquidity premium. The
lines represent the optimal fraction of wealth allocated to the respective equally-weighted U.S. bond return
portfolios as a function of liquidity premium calculated using daily data from January 2, 2004 to December
30, 2012. Bold black line represent an investor with γ = 5, the bold grey line for γ = 10 and dotted line for
γ = 20. In the first row correspond to the case of mean-variance investor and the second row to the CRRA
investor. The investment horizon and the rebalancing frequency in this figure correspond to one-year.

each value of the predictor variable.

Table 4 shows the point estimate slopes and t-stat computed using the
standard errors obtained also from the Politis and Romano (1994) stationary
bootstrap procedure. I draw one main conclusion from this table which is
consistent with the results presented above. It is clear that optimal portfolio
policy is not linear or constant in liquidity. For the two investor preferences the
short-term nominal and the TIPS bonds portfolio policy responds to changes
in liquidity. This conclusion is derived from the fact that the null hypothesis is
rejected indicating that all slopes are statistically significant at the 10% level
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or less. The only case where slopes are not statistically significant is for short-
term TIPS bonds with MV preferences. The other case where we can not reject
the null hypothesis is for short-term nominal bonds with CRRA preferences.
In this case, the optimal portfolio function is constant but smaller than the
unconditional weight.

For long-term TIPS, α(Zt) is almost constant and statistically not different
from zero over the negative range of liquidity until Zt = 2. After that the
slopes are positive and over the last range of liquidity they are negative and
statistically significant. I find the same results for both investor preferences.
The optimal portfolio function for long-term nominal bonds goes in the
opposite way. It starts by being flat and statistically not different from zero,
then slopes become negative, and over the the end range of liquidity, slopes
are positive and statistically significant.

Overall, I can conclude that optimal portfolio choice is unresponsive over
the negative and first positive range of liquidity, however portfolio allocations
start to react as liquidity conditions worsen. This conclusion regarding the
general shape of the portfolio weight functions is reliable in the sense that
non-parametric techniques used here produce a consistent estimator of the
portfolio functions.

4.2.3 Robustness analysis: Parametric portfolio functions

Parametric portfolio functions

To analyze whether or not the shape of the optimal portfolio functions
presented in this section are robust to a particular choice for the constant
λ, I also estimate a parametric portfolio function. This is to confirm the
results obtained above. In accordance with the shapes of the portfolio
functions obtained before, I use a third degree polynomial in liquidity (Zt)
to approximate the estimated non-parametric portfolio policy function

αp(Zt) = a0 + a1Zt + a2Z
2
t + a3Z

3
t . (12)

The parametric optimal portfolio weight is computed by applying a
standard GMM procedure to the conditional Euler equation. In this case the
moment condition is

Ê
[
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α
| Zt = z̄

]
=

1

T
ΣT
t=1

(
∂u(Wt+1)

∂Wt+1

∂Wt+1

∂α

)
⊗ g(Zt) = 0,

(13)
where g(Zt) = [1, Z, Z2, Z3]. The constants a0, a1, a2, a3 are reported in Table
5, and a comparison between the parametric and non-parametric optimal
portfolio functions is plotted in Figure 8.
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Figure 8: Optimal portfolio weights as a function of 10-year liquidity
premium (Parametric vs Non-parametric functions)
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The bars in the background represent the histogram (scaled to add up to 10) of liquidity premium. The
lines represent the optimal fraction of wealth allocated to the respective equally-weighted U.S. bond return
portfolios as a function of liquidity premium calculated using daily data from January 2, 2004 to December
30, 2012. The investment horizon and the rebalancing frequency in this figure correspond to one-year and
I assume CRRA preferences.

Figure 8 compares the parametric optimal portfolio function, obtained from
the polynomial model, with the non-parametric function in the case of CRRA
preferences. What we see is that both functions have approximately the same
shape (except for short-term TIPS), which is an indication that results are
broadly consistent. I confirm that portfolio policies are nonlinear, and the
comparison of policies at different points of the liquidity distribution shows a
large variation in the optimal allocation, being the effect of liquidity strong
when it is greater than three standard deviations above its mean. However,
results must be interpreted with caution since the data density at the margins
of the empirical distribution of the predictor variable is small. It is well known
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that an empirical distribution is a noisy model of the true distribution in the
tail area.

Table 5 gives estimates of the parameter ai for the optimal portfolio
function defined in equation (11) for a CRRA investor. I will focus on the
annual frequency, which contains the companion results for Figure 8, and we
see that most of the coefficients are statistically significant at 5% o more. a1,
which is the slope of the portfolio function in the center of the distribution
(Zt = 0), is positive and statistically significant for short-term nominal and
TIPS bonds, but it is not statistically significant for long-term bonds. This
means that portfolio weights do not respond to changes in liquidity at the
central range of liquidity. The result is consistent with the non-parametric
results.

Alternative market-based measure of liquidity

As an additional robustness check, I also consider an alternative market-based
measure of liquidity. This examines whether or not the results presented
here depend on a particular way to proxy the liquidity differential between
inflation-indexed bonds and nominal bonds (liquidity premium), represented
by Zt. Figure C.1, in Appendix C, shows the optimal fraction of wealth
allocated to equally-weighted U.S. bond portfolios as a function of liquidity
premium measures using Gomez (2013). Looking at Figure 10, first I confirm
the conclusion that liquidity constitutes relevant conditioning information in
the portfolio choice problem. Second, I conclude that results are robust to the
liquidity premium measure used, in the sense that the shape of the optimal
allocation policy is approximately the same with both measures of liquidity.
Finally, liquidity measures are available for different maturities (10-years and
20-years), however results do not depend on a particular choice of the maturity
of the liquidity premium (results are available upon request). This implies
that both market-based measures of liquidity are capturing time variations in
investment opportunities.

4.3 Does bond return predictability imply improved asset
allocation and performance?

From the standpoint of practical advice to portfolio investors, an additional
natural question to ask is whether or not the bond return predictability
translates into improved out-of-sample asset allocation and performance. The
idea is that at the start of each period (one-month, one-quarter or one-year),
one investor makes portfolio allocations based on the belief that bond returns
are predictable by liquidity. I compare his/her performance to that of another
investor who believes that bond returns are independent and identically
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Table 5: Parametric conditional portfolio weight function (CRRA investor)

Monthly frequency
Short-term Nominal Short-term TIPS

a0 a1 a2 a3 a0 a1 a2 a3
Estimate 10.81 -6.35 25.75 -4.61 1.65 -1.19 2.17 0.06

t-stat 4.37 -2.17 2.00 -1.92 3.53 -1.76 2.29 0.11
p-value 0.00 0.03 0.05 0.06 0.00 0.08 0.02 0.91

Long-term Nominal Long-term TIPS
a0 a1 a2 a3 a0 a1 a2 a3

Estimate 2.06 -0.51 0.08 -0.01 0.91 0.00 0.30 -0.06
t-stat 9.05 -1.42 0.40 -0.42 4.21 0.00 1.41 -1.63

p-value 0.00 0.16 0.69 0.67 0.00 1.00 0.16 0.10

Quarterly frequency
Short-term Nominal Short-term TIPS

a0 a1 a2 a3 a0 a1 a2 a3
Estimate 3.48 -0.01 0.05 -0.03 0.49 0.02 2.06 -0.38

t-stat 6.64 -0.02 0.09 -0.30 2.62 0.05 4.05 -4.14
p-value 0.00 0.99 0.93 0.77 0.01 0.96 0.00 0.00

Long-term Nominal Long-term TIPS
a0 a1 a2 a3 a0 a1 a2 a3

Estimate 0.83 -0.20 -0.01 0.00 0.35 -0.06 0.52 -0.10
t-stat 6.67 -1.37 -0.07 0.04 3.41 -0.33 3.00 -3.07

p-value 0.00 0.17 0.94 0.97 0.00 0.74 0.00 0.00

Annual frequency
Short-term Nominal Short-term TIPS

a0 a1 a2 a3 a0 a1 a2 a3
Estimate 2.35 0.72 -0.72 0.09 0.25 0.62 0.60 0.12

t-stat 8.19 3.35 -4.16 2.46 1.99 2.05 2.38 0.54
p-value 0.00 0.00 0.00 0.01 0.05 0.04 0.02 0.59

Long-term Nominal Long-term TIPS
a0 a1 a2 a3 a0 a1 a2 a3

Estimate 0.86 0.07 -0.28 0.04 0.27 0.17 0.31 -0.06
t-stat 7.27 0.93 -4.44 3.65 3.49 1.39 2.93 -2.59

p-value 0.00 0.35 0.00 0.00 0.00 0.16 0.00 0.01

Each panel gives estimates of the parameter ci for the optimal portfolio function defined in equation
(11). These estimates are computed through GMM on the moment condition (12), using a Newey
and West estimator of the spectral density matrix. I consider four portfolio allocation problems: two
where the investor chooses between the portfolio of short-term or long-term nominal Treasury bonds
and a risk-free asset and another two where he chooses between a portfolio of short-term or long-term
TIPS and a risk-free asset. Each panel shows a different investment horizon: monthly, quarterly and
annual. I used U.S. data from January 1, 2004 to December 30 2011.

distributed (i.i.d.), and ignores any evidence of bond return predictability in
making his/her portfolios allocation choices.

I used rolling estimation approach, which consists of estimating a series of
out-of-sample portfolio returns by using a rolling estimation window over the
entire data set. Specifically, I choose an estimation window of length M=260
days (1 year). In each day, starting from t = M + 1, I use the data in the
previous M days to estimate the optimal portfolio weights. In other words,
each investor has an investment horizon of one-year and uses all data available
until period T −M to choose his/her first portfolio weights. Next, I use those
weights to compute the portfolio returns. Repeating this procedure, involve
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adding the information for the next period in the data set and dropping the
earliest period (keeping the window length fixed), until the end of the data
set is reached. In this way, I obtain a time series of portfolio returns for each
(unconditional and conditional) strategy.

To compute out-of-sample performance of this two different strategies, I
compute the out-of-sample Sharpe ratio of strategy j, defined as the sample
mean of out-of-sample excess returns (over the risk-free asset), µj , divided by
their sample standard deviation, σj , for strategy j = U,C

SRj =
µj
σj
. (14)

In addition, I calculate the certainty equivalent rates of return (CER) for
each strategy to judge its relative performance. The CER represents the risk-
free rate of return that investor is willing to accept instead of undertaking the
risky portfolio strategy. Formally, I compute the CER of strategy j

CERj = µj −
γ

2
σ2
j , (15)

where µj and σ2
j are the mean and variance of out-of-sample excess returns

for strategy j = U,C. To test whether or not the Sharpe ratios, and the
certainty equivalent returns of two strategies are statistically distinguishable, I
test the following null hypothesis Ho : SRU −SRC and Ho : CERU −CERC .
This difference represents the gain (or loss) in returns from investing in
unconditional strategy versus conditional strategy. I compute the p-value of
the differences by using the Politis and Romano (1994) stationary bootstrap
procedure (pv−boot).16 Finally, an useful benchmark are the in-sample Sharpe
ratios and the certainty equivalent returns (to assess the effect of estimation
error), calculated for the different portfolio strategies by using the entire time
series of excess returns.

Table 6 shows results assuming both investors are mean-variance optimizer
with a one-year investment horizon, and γ = 10. Panel A shows the CER and
the SR calculated with the entire data set (in-sample analysis). The in-sample
Sharpe ratios are all positive (except for short-term nominal bonds), being the
performing of the conditional strategy better than the unconditional strategy
for all portfolios. For instance, for a nominal long-term portfolio the Sharpe
ratio of unconditional strategy is equal to 0.12 versus 0.36 of the conditional
16 I replicate the process described in Appendix A 1000 times. For each such replication, I
compute the optimal allocations for each investor through one year (260 days). At every
point in time, the investors are allowed to utilize just the information available up to that
point in time. I calculate the difference in certainty equivalent between the two strategies
and the adjusted Sharpe ratio for each replication. Finally, I count the proportion of times
in 1000 replications that these differences exceed the certainty equivalent and adjusted
Sharpe ratio based on the original data for a given set of results.
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strategy, indicating that with the conditional strategy the investor takes on less
risk to achieve the same return. For the same portfolio, the CERU is equal
to 0.53 vs 0.60 of the CERC . This means that an investor requires a higher
risk-free return to give up the opportunity to invest in the portfolio following
a conditional strategy.

Similarly, the difference between the in-sample SR for the unconditional
and conditional strategy shows the loss (given that I obtain negative values)
from investing, based on the belief that bond returns are i.i.d. This means
that the bond return predictability translates into improved in-sample asset
allocation and performance. The comparison of in-sample certainty equivalent
returns and their differences, confirms the conclusions from the analysis of
Sharpe ratios. Finally, the difference between the Sharpe ratios and certainty
equivalent returns of each strategy are statistically significant in all cases, as
pv − boot values indicate.

Next, I assess the magnitude of the potential gains that can actually be
realized by an investor, using the out-of-sample performance of the strategies.
From panel B of Table 6, we see that in all cases the SR for the portfolios
from the conditional strategy is much higher than for the unconditional
strategy. I find the same results for CER. This means that a conditional
strategy outperforms the unconditional strategy. This suggests also that
conditional strategy might improve, not only in-sample but also out-of-sample
performance. The significance of the CER differential and the SR differential,
which is measure using the stationary bootstrap technique proposed by Politis
and Romano (1994), implies that this result is statistically significant.

Finally, the difference between the in-sample and out-of-sample strategies
allows me to gauge the severity of the estimation error. From the out-of-sample
Sharpe ratio, reported in Panel B of Table 6, the unconditional strategy does
not have a substantially lower Sharpe ratio and certainty equivalent returns
out-of-sample than in-sample. This means that the effect of estimation error
seems not to be so large. Consequently, it does not erodes the gains from
optimal diversification given that differences turn out not to be economically
important.

5 Conclusions

Although many studies on the liquidity premium have been conducted, the
implications for investors are rarely addressed in any detail. In order to
draw conclusions from the effect of the liquidity risk premium from an
investor’s point of view, it is necessary to specifically analyze optimal portfolio
compositions in realistic settings. This is the focus of this paper.

I consider the portfolio problem of a mean-variance and a power utility
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investor whose portfolio choices are between the asset of interest and a risk-
free asset. The investor’s problem is to choose optimal allocations to the risky
asset as a function of predictor value: liquidity premium. In this paper, I use
two alternative measures recently proposed in the literature for the liquidity
differential between inflation-indexed bonds and nominal bonds. These assess
whether or not liquidity changes influence optimal portfolio allocations in the
U.S. government bond market. While these issues have been well studied
for stock-only portfolios, in general, less has been done to provide empirical
evidence for the optimal portfolio choice of a utility-maximizing risk-averse
investor, conditional upon observing a particular liquidity signal.

Overall, results show that optimal portfolios vary substantially with regards
to predictor value. In particular, the effect of liquidity is a decreasing function
of the investment horizon. Additionally, conditional allocations in risky assets
decrease as liquidity conditions worsen. However, once the liquidity differential
between U.S. nominal Treasury and TIPS bonds is sufficiently large, it leads
to: (i) lower optimal portfolio allocations in TIPS; and (ii) higher optimal
portfolio allocations on nominal bonds with respect to the risk-free bond. To
summarize, this paper suggests that market liquidity signals could provide
valuable guidance to investors, and adds to the evidence found for stock
portfolios by Ghysels and Pereira (2008), which suggests the existence of a
dependence of the optimal portfolio choices on changes in liquidity.
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Appendix

A Bootstrap procedure

Algorithm 1 Politis and Romano (1994) stationary bootstrap procedure
Require: Considering the equally weighted bond returns portfolio Rt
Ensure: that the data are re-sampled in blocks where the block length has a

geometric distribution with a mean of 1/q.
1: Randomly select an observation, say, RNt , from the original time series
2: With a fixed probability q, select the next observation randomly from

the original time series, and with probability (1 − q) select it as the next
observation to Rt (i.e., select RNt+1) from the original time series.

3: Repeat this process to generate a pseudo time series of desired length.
4: Construct bootstrap samples of rx(n)

t+1 by using the bootstrap samples of
Xt and resampling blocks of w subsequent residuals ε(n)

t+1.
5: Repeat the bootstrap procedure 1000 times.
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B MV vs CRRA optimal portfolio functions

Figure B.1: MV vs CRRA optimal portfolio weights

(a) Quaterly frequency
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(b) Annual frequency
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The bars in the background represent the histogram (scaled to add up to 30) of liquidity premium. The black
line represent line represent the optimal fraction of wealth allocated to equally-weighted U.S. bond portfolio as a
function of liquidity premium for a mean-variance investor. The grey line represents the same for CRRA investor.

46



C Optimal portfolio functions considering an alter-
native liquidity premium measure

Figure C.1: Optimal portfolio weights as a function of 10-year liquidity
premium: Lz−asw10,t

(a) Monthly frequency
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(a) Quarterly frequency
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(b) Annual frequency
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The bars in the background represent the histogram (scaled to add up to 20) of liquidity premium. The lines
represent the optimal fraction of wealth allocated to equally-weighted U.S. bond portfolio as a function of liquidity
premium.
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